Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (8): 115-128.DOI: 10.11686/cyxb2022451
Yan-xia KANG(), Yuan-bo JIANG, Guang-ping QI(), Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Zhong-xia TANG, Ai-xia WANG
Received:
2022-11-14
Revised:
2023-01-04
Online:
2023-08-20
Published:
2023-06-16
Contact:
Guang-ping QI
Yan-xia KANG, Yuan-bo JIANG, Guang-ping QI, Min-hua YIN, Yan-lin MA, Jing-hai WANG, Qiong JIA, Zhong-xia TANG, Ai-xia WANG. Effects of Onobrychis viciifolia and Bromus inermis grass mixture sowing and deficit irrigation on grassland water use and production performance[J]. Acta Prataculturae Sinica, 2023, 32(8): 115-128.
处理Treatment | 水分调控Water treatment (θFC) | 种植模式Cropping pattern |
---|---|---|
W0B | 充分灌水Adequate irrigation (W0), 75%~85% | 无芒雀麦单播 B. inermis monocropping (B) |
W1B | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2B | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3B | 重度亏水Severe water deficit (W3), 45%~55% | |
W0O | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草单播 Sainfoin monocropping (O) |
W1O | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2O | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3O | 重度亏水Severe water deficit (W3), 45%~55% | |
W0M | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草与无芒雀麦混播 Sainfoin mixed with B. inermis (M) |
W1M | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2M | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3M | 重度亏水Severe water deficit (W3), 45%~55% |
Table 1 Experimental design
处理Treatment | 水分调控Water treatment (θFC) | 种植模式Cropping pattern |
---|---|---|
W0B | 充分灌水Adequate irrigation (W0), 75%~85% | 无芒雀麦单播 B. inermis monocropping (B) |
W1B | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2B | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3B | 重度亏水Severe water deficit (W3), 45%~55% | |
W0O | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草单播 Sainfoin monocropping (O) |
W1O | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2O | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3O | 重度亏水Severe water deficit (W3), 45%~55% | |
W0M | 充分灌水Adequate irrigation (W0), 75%~85% | 红豆草与无芒雀麦混播 Sainfoin mixed with B. inermis (M) |
W1M | 轻度亏水Mild water deficit (W1), 65%~75% | |
W2M | 中度亏水Moderate water deficit (W2), 55%~65% | |
W3M | 重度亏水Severe water deficit (W3), 45%~55% |
种植模式 PM | 水分调控 WT | 第1茬The first cut | 第2茬The second cut | 第3茬The third cut | 总灌水量 TI | 总蒸散量 TET | |||
---|---|---|---|---|---|---|---|---|---|
灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | ||||
B | W0 | 221.06Ca | 231.12Ca | 178.21Aa | 225.44Ca | 180.22Ba | 213.74Ba | 579.49Ca | 670.30Ca |
W1 | 172.35Bb | 198.47Bb | 114.58Cb | 185.26Bb | 165.91Bb | 188.06Ab | 452.84Cb | 571.79Cb | |
W2 | 147.82Ac | 182.35Ac | 98.27Bc | 158.02Bc | 135.02Cc | 170.32Bc | 381.11Cc | 510.69Bc | |
W3 | 112.36Bd | 159.24Ad | 86.34Bc | 147.61Ad | 102.99Bd | 144.36Bd | 301.69Bd | 451.21Bd | |
O | W0 | 252.17Aa | 267.23Aa | 187.25Aa | 255.60Aa | 202.37Aa | 223.05Aa | 641.79Aa | 745.88Aa |
W1 | 185.20Ab | 240.02Ab | 168.33Ab | 208.14Ab | 186.12Ab | 190.80Ab | 539.65Ab | 638.96Ab | |
W2 | 151.26Ac | 182.72Ac | 137.41Ac | 178.37Ac | 178.40Ab | 185.37Ab | 467.07Ac | 546.46Ac | |
W3 | 112.03Bd | 162.49Ad | 118.02Ad | 149.01Ad | 125.60Ac | 150.66Bc | 355.65Ad | 462.16ABd | |
M | W0 | 235.67Ba | 249.08Ba | 179.55Aa | 237.62Ba | 196.44Aa | 218.05ABa | 611.66Ba | 704.75Ba |
W1 | 181.20ABb | 237.11Ab | 145.37Bb | 202.25Ab | 175.19ABb | 184.43Ab | 501.76Bb | 623.79Bb | |
W2 | 156.80Ac | 188.09Ac | 112.50Cc | 178.22Ac | 160.24Bc | 172.04Bc | 429.54Bc | 538.35Ac | |
W3 | 126.01Ad | 160.33Ad | 93.57Bd | 152.37Ad | 121.38Ad | 161.33Ac | 340.96Ad | 474.03Ad | |
水分调控WT | 706.19** | 1145.89** | 268.61** | 715.62** | 306.03** | 288.06** | 686.67** | 1846.94** | |
种植模式PM | 16.72** | 110.16** | 78.43** | 59.35** | 71.55** | 8.92** | 87.41** | 132.92** | |
WT×PM | 5.82** | 33.89** | 6.69** | 7.50** | 3.19* | 4.36** | 1.27ns | 14.13** |
Table 2 Effect of deficit irrigation and cropping pattern on irrigation water and evapotranspiration in grassland (mm)
种植模式 PM | 水分调控 WT | 第1茬The first cut | 第2茬The second cut | 第3茬The third cut | 总灌水量 TI | 总蒸散量 TET | |||
---|---|---|---|---|---|---|---|---|---|
灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | 灌水量I | 蒸散量ET | ||||
B | W0 | 221.06Ca | 231.12Ca | 178.21Aa | 225.44Ca | 180.22Ba | 213.74Ba | 579.49Ca | 670.30Ca |
W1 | 172.35Bb | 198.47Bb | 114.58Cb | 185.26Bb | 165.91Bb | 188.06Ab | 452.84Cb | 571.79Cb | |
W2 | 147.82Ac | 182.35Ac | 98.27Bc | 158.02Bc | 135.02Cc | 170.32Bc | 381.11Cc | 510.69Bc | |
W3 | 112.36Bd | 159.24Ad | 86.34Bc | 147.61Ad | 102.99Bd | 144.36Bd | 301.69Bd | 451.21Bd | |
O | W0 | 252.17Aa | 267.23Aa | 187.25Aa | 255.60Aa | 202.37Aa | 223.05Aa | 641.79Aa | 745.88Aa |
W1 | 185.20Ab | 240.02Ab | 168.33Ab | 208.14Ab | 186.12Ab | 190.80Ab | 539.65Ab | 638.96Ab | |
W2 | 151.26Ac | 182.72Ac | 137.41Ac | 178.37Ac | 178.40Ab | 185.37Ab | 467.07Ac | 546.46Ac | |
W3 | 112.03Bd | 162.49Ad | 118.02Ad | 149.01Ad | 125.60Ac | 150.66Bc | 355.65Ad | 462.16ABd | |
M | W0 | 235.67Ba | 249.08Ba | 179.55Aa | 237.62Ba | 196.44Aa | 218.05ABa | 611.66Ba | 704.75Ba |
W1 | 181.20ABb | 237.11Ab | 145.37Bb | 202.25Ab | 175.19ABb | 184.43Ab | 501.76Bb | 623.79Bb | |
W2 | 156.80Ac | 188.09Ac | 112.50Cc | 178.22Ac | 160.24Bc | 172.04Bc | 429.54Bc | 538.35Ac | |
W3 | 126.01Ad | 160.33Ad | 93.57Bd | 152.37Ad | 121.38Ad | 161.33Ac | 340.96Ad | 474.03Ad | |
水分调控WT | 706.19** | 1145.89** | 268.61** | 715.62** | 306.03** | 288.06** | 686.67** | 1846.94** | |
种植模式PM | 16.72** | 110.16** | 78.43** | 59.35** | 71.55** | 8.92** | 87.41** | 132.92** | |
WT×PM | 5.82** | 33.89** | 6.69** | 7.50** | 3.19* | 4.36** | 1.27ns | 14.13** |
茬次 Cut | 水分调控 WT | 粗蛋白含量CP content | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 9.60Bd | 13.72Ab | 13.02Ac | 37.75Ba | 40.85Aa | 38.20Ba | 53.65Ba | 57.73Aa | 54.26Ba |
W1 | 10.27Bc | 14.96Aa | 14.46Aa | 37.28Aa | 37.59Ab | 36.94Aa | 51.82Bb | 55.30Abc | 51.38Bb | |
W2 | 10.86Cb | 14.57Aa | 13.91Bab | 36.02Bb | 38.24Ab | 37.85Aa | 50.42Cc | 56.61Aab | 52.41Bb | |
W3 | 11.66Ca | 15.33Aa | 13.31Bbc | 33.10Bc | 37.66Ab | 38.01Aa | 48.33Bd | 53.97Ac | 52.89Aab | |
WT | 29.67** | 29.15** | 34.02** | |||||||
PM | 511.88** | 53.80** | 129.79** | |||||||
WT×PM | 8.85** | 13.47** | 7.44** | |||||||
第2茬 The second cut | W0 | 10.30Bc | 14.19Ac | 13.85Ab | 36.79Ba | 38.29Aa | 37.76ABa | 52.78Ba | 55.25Aa | 53.06Ba |
W1 | 12.21Bb | 14.98Ab | 15.02Aa | 35.55Aab | 36.15Ab | 36.03Ab | 50.44Ab | 48.81Ab | 49.60Ab | |
W2 | 12.96Ca | 15.46Aab | 14.77Ba | 34.31Bbc | 37.44Aab | 36.68Ab | 50.79Ab | 49.62Ab | 50.24Ab | |
W3 | 13.21Ca | 16.21Aa | 14.20Bab | 33.38Bc | 36.46Ab | 36.81Ab | 49.01Ac | 49.50Ab | 50.66Ab | |
WT | 43.00** | 16.29** | 64.76** | |||||||
PM | 223.37** | 33.80** | ns | |||||||
WT×PM | 8.96** | 3.95** | 6.77** | |||||||
第3茬 The third cut | W0 | 11.44Bc | 14.39Ab | 14.27Aa | 33.73Ba | 37.41Aa | 36.92Aa | 51.29Ba | 54.01Aa | 51.57Ba |
W1 | 11.39Bc | 15.55Aa | 15.11Aa | 31.84Cb | 35.62Ac | 34.46Bc | 48.19Cb | 52.91Ab | 48.90Bc | |
W2 | 12.67Cb | 15.79Aa | 14.76Ba | 27.86Bc | 36.33Ab | 35.81Ab | 48.72Cb | 52.99Ab | 49.69Bbc | |
W3 | 13.42Ba | 16.01Aa | 14.05Ba | 27.16Bc | 35.97Abc | 36.27Aab | 47.30Cc | 51.09Ac | 49.93Bb | |
WT | 13.98** | 38.71** | 87.57** | |||||||
PM | 193.46** | 351.06** | 303.81** | |||||||
WT×PM | 8.29** | 23.76** | 10.55** |
Table 3 Effect of deficit irrigation and cropping pattern on forage quality (%)
茬次 Cut | 水分调控 WT | 粗蛋白含量CP content | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 9.60Bd | 13.72Ab | 13.02Ac | 37.75Ba | 40.85Aa | 38.20Ba | 53.65Ba | 57.73Aa | 54.26Ba |
W1 | 10.27Bc | 14.96Aa | 14.46Aa | 37.28Aa | 37.59Ab | 36.94Aa | 51.82Bb | 55.30Abc | 51.38Bb | |
W2 | 10.86Cb | 14.57Aa | 13.91Bab | 36.02Bb | 38.24Ab | 37.85Aa | 50.42Cc | 56.61Aab | 52.41Bb | |
W3 | 11.66Ca | 15.33Aa | 13.31Bbc | 33.10Bc | 37.66Ab | 38.01Aa | 48.33Bd | 53.97Ac | 52.89Aab | |
WT | 29.67** | 29.15** | 34.02** | |||||||
PM | 511.88** | 53.80** | 129.79** | |||||||
WT×PM | 8.85** | 13.47** | 7.44** | |||||||
第2茬 The second cut | W0 | 10.30Bc | 14.19Ac | 13.85Ab | 36.79Ba | 38.29Aa | 37.76ABa | 52.78Ba | 55.25Aa | 53.06Ba |
W1 | 12.21Bb | 14.98Ab | 15.02Aa | 35.55Aab | 36.15Ab | 36.03Ab | 50.44Ab | 48.81Ab | 49.60Ab | |
W2 | 12.96Ca | 15.46Aab | 14.77Ba | 34.31Bbc | 37.44Aab | 36.68Ab | 50.79Ab | 49.62Ab | 50.24Ab | |
W3 | 13.21Ca | 16.21Aa | 14.20Bab | 33.38Bc | 36.46Ab | 36.81Ab | 49.01Ac | 49.50Ab | 50.66Ab | |
WT | 43.00** | 16.29** | 64.76** | |||||||
PM | 223.37** | 33.80** | ns | |||||||
WT×PM | 8.96** | 3.95** | 6.77** | |||||||
第3茬 The third cut | W0 | 11.44Bc | 14.39Ab | 14.27Aa | 33.73Ba | 37.41Aa | 36.92Aa | 51.29Ba | 54.01Aa | 51.57Ba |
W1 | 11.39Bc | 15.55Aa | 15.11Aa | 31.84Cb | 35.62Ac | 34.46Bc | 48.19Cb | 52.91Ab | 48.90Bc | |
W2 | 12.67Cb | 15.79Aa | 14.76Ba | 27.86Bc | 36.33Ab | 35.81Ab | 48.72Cb | 52.99Ab | 49.69Bbc | |
W3 | 13.42Ba | 16.01Aa | 14.05Ba | 27.16Bc | 35.97Abc | 36.27Aab | 47.30Cc | 51.09Ac | 49.93Bb | |
WT | 13.98** | 38.71** | 87.57** | |||||||
PM | 193.46** | 351.06** | 303.81** | |||||||
WT×PM | 8.29** | 23.76** | 10.55** |
茬次 Cut | 水分调控 WT | 水分利用效率WUE | 灌溉水分利用效率IWUE | 粗蛋白水分利用效率CPWUE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 1.70Ca | 2.22Bb | 3.01Aab | 1.78Cc | 2.36Bc | 3.18Aa | 0.16Cb | 0.31Bb | 0.39Ab |
W1 | 1.92Ca | 2.36Bab | 3.07Aab | 2.21Cb | 3.06Bab | 4.02Aa | 0.20Ca | 0.35Ba | 0.44Aa | |
W2 | 1.90Ca | 2.45Ba | 3.17Aa | 2.35Cb | 2.96Bb | 3.80Ab | 0.21Ca | 0.36Ba | 0.44Aa | |
W3 | 1.89Ca | 2.25Bab | 2.90Ab | 2.68Ca | 3.26Ba | 3.69Ab | 0.22Ca | 0.34Ba | 0.39Ab | |
第2茬 The second cut | W0 | 1.10Ca | 1.92Bb | 2.19Ab | 1.40Cb | 2.63Bb | 2.90Ac | 0.11Cb | 0.27Bc | 0.30Ab |
W1 | 1.27Ca | 2.23Ba | 2.50Aa | 2.05Ca | 2.76Bab | 3.48Ab | 0.15Ca | 0.33Bb | 0.38Aa | |
W2 | 1.23Ca | 2.19Ba | 2.62Aa | 1.97Ca | 2.84Bab | 4.15Aa | 0.16Ca | 0.34Bb | 0.39Aa | |
W3 | 1.07Ba | 2.33Aa | 2.52Aa | 1.82Ca | 2.94Ba | 4.10Aa | 0.14Bb | 0.38Aa | 0.36Aa | |
第3茬 The third cut | W0 | 0.99Ca | 1.92Bb | 2.15Aa | 1.17Ca | 2.12Bb | 2.39Ab | 0.11Ca | 0.28Bb | 0.31Ab |
W1 | 1.04Ba | 2.16Aa | 2.37Aa | 1.18Ca | 2.22Bb | 2.50Ab | 0.12Ba | 0.34Aa | 0.36Aa | |
W2 | 0.96Ca | 1.84Bb | 2.19Aa | 1.21Ca | 1.91Bc | 2.35Ab | 0.12Ca | 0.29Bb | 0.32Ab | |
W3 | 1.00Ba | 2.14Aa | 2.13Aa | 1.40Ba | 2.56Aa | 2.84Aa | 0.13Ca | 0.34Aa | 0.30Bb | |
平均值 Average | W0 | 1.27Cb | 2.03Bb | 2.47Ab | 1.45Cb | 2.37Bc | 2.82Ac | 0.13Cb | 0.28Bc | 0.33Ab |
W1 | 1.42Ca | 2.26Ba | 2.68Aa | 1.81Ca | 2.68Bb | 3.33Ab | 0.16Ca | 0.34Bab | 0.39Aa | |
W2 | 1.38Cab | 2.16Bab | 2.67Aa | 1.84Ca | 2.57Bb | 3.43Aab | 0.16Ca | 0.33Bb | 0.38Aa | |
W3 | 1.33Cab | 2.24Ba | 2.52Ab | 1.97Ca | 2.92Ba | 3.54Aa | 0.17Ba | 0.35Aa | 0.35Ab | |
WT | 14.20** | 73.01** | 42.66** | |||||||
PM | 1077.37** | 894.41** | 1526.24** | |||||||
WT×PM | 1.94ns | 3.13* | 8.38** |
Table 4 Effect of deficit irrigation and cropping pattern on water use of forage (kg·m-3)
茬次 Cut | 水分调控 WT | 水分利用效率WUE | 灌溉水分利用效率IWUE | 粗蛋白水分利用效率CPWUE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | O | M | B | O | M | B | O | M | ||
第1茬 The first cut | W0 | 1.70Ca | 2.22Bb | 3.01Aab | 1.78Cc | 2.36Bc | 3.18Aa | 0.16Cb | 0.31Bb | 0.39Ab |
W1 | 1.92Ca | 2.36Bab | 3.07Aab | 2.21Cb | 3.06Bab | 4.02Aa | 0.20Ca | 0.35Ba | 0.44Aa | |
W2 | 1.90Ca | 2.45Ba | 3.17Aa | 2.35Cb | 2.96Bb | 3.80Ab | 0.21Ca | 0.36Ba | 0.44Aa | |
W3 | 1.89Ca | 2.25Bab | 2.90Ab | 2.68Ca | 3.26Ba | 3.69Ab | 0.22Ca | 0.34Ba | 0.39Ab | |
第2茬 The second cut | W0 | 1.10Ca | 1.92Bb | 2.19Ab | 1.40Cb | 2.63Bb | 2.90Ac | 0.11Cb | 0.27Bc | 0.30Ab |
W1 | 1.27Ca | 2.23Ba | 2.50Aa | 2.05Ca | 2.76Bab | 3.48Ab | 0.15Ca | 0.33Bb | 0.38Aa | |
W2 | 1.23Ca | 2.19Ba | 2.62Aa | 1.97Ca | 2.84Bab | 4.15Aa | 0.16Ca | 0.34Bb | 0.39Aa | |
W3 | 1.07Ba | 2.33Aa | 2.52Aa | 1.82Ca | 2.94Ba | 4.10Aa | 0.14Bb | 0.38Aa | 0.36Aa | |
第3茬 The third cut | W0 | 0.99Ca | 1.92Bb | 2.15Aa | 1.17Ca | 2.12Bb | 2.39Ab | 0.11Ca | 0.28Bb | 0.31Ab |
W1 | 1.04Ba | 2.16Aa | 2.37Aa | 1.18Ca | 2.22Bb | 2.50Ab | 0.12Ba | 0.34Aa | 0.36Aa | |
W2 | 0.96Ca | 1.84Bb | 2.19Aa | 1.21Ca | 1.91Bc | 2.35Ab | 0.12Ca | 0.29Bb | 0.32Ab | |
W3 | 1.00Ba | 2.14Aa | 2.13Aa | 1.40Ba | 2.56Aa | 2.84Aa | 0.13Ca | 0.34Aa | 0.30Bb | |
平均值 Average | W0 | 1.27Cb | 2.03Bb | 2.47Ab | 1.45Cb | 2.37Bc | 2.82Ac | 0.13Cb | 0.28Bc | 0.33Ab |
W1 | 1.42Ca | 2.26Ba | 2.68Aa | 1.81Ca | 2.68Bb | 3.33Ab | 0.16Ca | 0.34Bab | 0.39Aa | |
W2 | 1.38Cab | 2.16Bab | 2.67Aa | 1.84Ca | 2.57Bb | 3.43Aab | 0.16Ca | 0.33Bb | 0.38Aa | |
W3 | 1.33Cab | 2.24Ba | 2.52Ab | 1.97Ca | 2.92Ba | 3.54Aa | 0.17Ba | 0.35Aa | 0.35Ab | |
WT | 14.20** | 73.01** | 42.66** | |||||||
PM | 1077.37** | 894.41** | 1526.24** | |||||||
WT×PM | 1.94ns | 3.13* | 8.38** |
种植模式PM | 水分调控 WT | 蒸散量 ET | 产量 Yield | 粗蛋白含量 CP content | 水分利用 效率 WUE | 灌溉水分 利用效率 IWUE | 粗蛋白水分 利用效率 CPWUE | 酸性洗涤 纤维含量 ADF content | 中性洗涤 纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|---|
B | W0 | 0.2565 | 0.2214 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3613 | 0.4148 |
W1 | 0.5908 | 0.1844 | 0.1556 | 0.1038 | 0.1577 | 0.1019 | 0.5183 | 0.7396 | |
W2 | 0.7982 | 0.0898 | 0.3167 | 0.0749 | 0.1850 | 0.1229 | 0.8011 | 0.7624 | |
W3 | 1.0000 | 0.0000 | 0.4278 | 0.0435 | 0.2583 | 0.1330 | 1.0000 | 1.0000 | |
O | W0 | 0.0000 | 0.8033 | 0.6759 | 0.5380 | 0.4379 | 0.5890 | 0.0000 | 0.0000 |
W1 | 0.3629 | 0.7405 | 0.8722 | 0.7002 | 0.5932 | 0.8032 | 0.3141 | 0.4456 | |
W2 | 0.6768 | 0.5070 | 0.8926 | 0.6270 | 0.5180 | 0.7543 | 0.1977 | 0.3477 | |
W3 | 0.9628 | 0.3800 | 1.0000 | 0.6842 | 0.7079 | 0.8543 | 0.2814 | 0.5557 | |
M | W0 | 0.1396 | 1.0000 | 0.6037 | 0.8475 | 0.6757 | 0.7754 | 0.1597 | 0.3624 |
W1 | 0.4143 | 0.9421 | 0.8167 | 1.0000 | 0.9182 | 1.0000 | 0.3979 | 0.7651 | |
W2 | 0.7043 | 0.7370 | 0.7463 | 0.9949 | 0.9272 | 0.9646 | 0.2710 | 0.6550 | |
W3 | 0.9226 | 0.5200 | 0.6296 | 0.8831 | 1.0000 | 0.8283 | 0.2382 | 0.6040 |
Table 5 Normalized values of each index of forage grass under different deficit irrigation treatment and cropping patterns
种植模式PM | 水分调控 WT | 蒸散量 ET | 产量 Yield | 粗蛋白含量 CP content | 水分利用 效率 WUE | 灌溉水分 利用效率 IWUE | 粗蛋白水分 利用效率 CPWUE | 酸性洗涤 纤维含量 ADF content | 中性洗涤 纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|---|
B | W0 | 0.2565 | 0.2214 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3613 | 0.4148 |
W1 | 0.5908 | 0.1844 | 0.1556 | 0.1038 | 0.1577 | 0.1019 | 0.5183 | 0.7396 | |
W2 | 0.7982 | 0.0898 | 0.3167 | 0.0749 | 0.1850 | 0.1229 | 0.8011 | 0.7624 | |
W3 | 1.0000 | 0.0000 | 0.4278 | 0.0435 | 0.2583 | 0.1330 | 1.0000 | 1.0000 | |
O | W0 | 0.0000 | 0.8033 | 0.6759 | 0.5380 | 0.4379 | 0.5890 | 0.0000 | 0.0000 |
W1 | 0.3629 | 0.7405 | 0.8722 | 0.7002 | 0.5932 | 0.8032 | 0.3141 | 0.4456 | |
W2 | 0.6768 | 0.5070 | 0.8926 | 0.6270 | 0.5180 | 0.7543 | 0.1977 | 0.3477 | |
W3 | 0.9628 | 0.3800 | 1.0000 | 0.6842 | 0.7079 | 0.8543 | 0.2814 | 0.5557 | |
M | W0 | 0.1396 | 1.0000 | 0.6037 | 0.8475 | 0.6757 | 0.7754 | 0.1597 | 0.3624 |
W1 | 0.4143 | 0.9421 | 0.8167 | 1.0000 | 0.9182 | 1.0000 | 0.3979 | 0.7651 | |
W2 | 0.7043 | 0.7370 | 0.7463 | 0.9949 | 0.9272 | 0.9646 | 0.2710 | 0.6550 | |
W3 | 0.9226 | 0.5200 | 0.6296 | 0.8831 | 1.0000 | 0.8283 | 0.2382 | 0.6040 |
项目 Parameter | 蒸散量 ET | 产量 Yield | 粗蛋白 含量 CP content | 水分利用效率 WUE | 灌溉水分 利用效率IWUE | 粗蛋白水分 利用效率CPWUE | 酸性洗涤纤维含量 ADF content | 中性洗涤纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|
信息熵值Information entropy value (Ej ) | 0.9187 | 0.8998 | 0.9309 | 0.8742 | 0.9112 | 0.8940 | 0.8998 | 0.9443 |
信息效用值Information utility value (Dj ) | 0.0813 | 0.1002 | 0.0691 | 0.1258 | 0.0888 | 0.1060 | 0.1002 | 0.0557 |
权重Weight coefficient (Wj, %) | 11.185 | 13.782 | 9.510 | 17.294 | 12.213 | 14.575 | 13.778 | 7.663 |
Table 6 Weights of each index of forage grass based on entropy-weighted method
项目 Parameter | 蒸散量 ET | 产量 Yield | 粗蛋白 含量 CP content | 水分利用效率 WUE | 灌溉水分 利用效率IWUE | 粗蛋白水分 利用效率CPWUE | 酸性洗涤纤维含量 ADF content | 中性洗涤纤维含量 NDF content |
---|---|---|---|---|---|---|---|---|
信息熵值Information entropy value (Ej ) | 0.9187 | 0.8998 | 0.9309 | 0.8742 | 0.9112 | 0.8940 | 0.8998 | 0.9443 |
信息效用值Information utility value (Dj ) | 0.0813 | 0.1002 | 0.0691 | 0.1258 | 0.0888 | 0.1060 | 0.1002 | 0.0557 |
权重Weight coefficient (Wj, %) | 11.185 | 13.782 | 9.510 | 17.294 | 12.213 | 14.575 | 13.778 | 7.663 |
1 | He M, Pan Y H, Zhou G Y, et al. Grazing and global change factors differentially affect biodiversity-ecosystem functioning relationships in grassland ecosystems. Global Change Biology, 2022, 28(18): 5492-5504. |
2 | Zhou W, Gang C C, Zhou L, et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica, 2014, 55(2): 86-96. |
3 | Yang C, Zhang Y X, Zhang H, et al. Recent advances in understanding the ecosystem functioning of diverse forage mixtures. Acta Prataculturae Sinica, 2022, 31(9): 206-219. |
杨策, 张玉雪, 张鹤, 等. 牧草混播生态系统功能研究进展. 草业学报, 2022, 31(9): 206-219. | |
4 | Luscher A, Mueller-Harvey I, Soussana J F, et al. Potential of legume-based grassland-livestock systems in Europe: a review. Grass and Forage Science, 2014, 69(2): 206-228. |
5 | Sturludottir E, Brophy C, Belanger G, et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass and Forage Science, 2014, 69(2): 229-240. |
6 | Lorentzen S, Roscher C, Schumacher J, et al. Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10(2): 73-87. |
7 | Feng T X, De K J, Xiang X M, et al. Effects of different mixtures and proportions of Avena sativa and pea on forage yield and quality in alpine cold region. Acta Agrestia Sinica, 2022, 30(2): 487-494. |
冯廷旭, 德科加, 向雪梅, 等. 高寒地区燕麦与豌豆不同混播组合和比例对饲草产量及品质的影响. 草地学报, 2022, 30(2): 487-494. | |
8 | Papadopoulos Y A, McElroy M S, Fillmore S A E, et al. Sward complexity and grass species composition affect the performance of grass-white clover pasture mixtures. Canadian Journal of Plant Science, 2012, 92: 1199-1205. |
9 | Liu Q Y, Yun L, Chen Y F, et al. The dynamic analysis of forage yield and interspecific competition in alfalfa-grass mixed pasture. Acta Prataculturae Sinica, 2022, 31(3): 181-191. |
刘启宇, 云岚, 陈逸凡, 等. 苜蓿——禾草混播草地牧草产量及种间竞争关系的动态研究. 草业学报, 2022, 31(3): 181-191. | |
10 | Wang X Y, Cao W X, Wang X J, et al. Herbage production and forage quality responses to cutting height and fertilization of legume-grass mixtures in the Hexi region. Acta Prataculturae Sinica, 2021, 30(4): 99-110. |
王辛有, 曹文侠, 王小军, 等. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应. 草业学报, 2021, 30(4): 99-110. | |
11 | Li A, Wu Y Z, Tai X S, et al. Effects of planting legume-grass mixtures on soil salinity and nutrients in irrigated areas along the Yellow River in Gansu Province. Acta Agrestia Sinica, 2021, 29(4): 664-670. |
李昂, 吴应珍, 台喜生, 等. 甘肃沿黄灌区种植豆禾混播牧草对土壤盐分和养分的影响. 草地学报, 2021, 29(4): 664-670. | |
12 | Schneider J R, Caverzan A, Chavarria G. Water deficit stress, ROS involvement, and plant performance. Archives of Agronomy and Soil Science, 2019, 65(8): 1160-1181. |
13 | Yang H, Du T S, Qiu R J, et al. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 2018, 179: 193-204. |
14 | Costa J M, Ortuo M F, Chaves M M. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology, 2007, 49(10): 1421-1434. |
15 | Lu J Y, Xiong J B, Zhang H S, et al. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
陆姣云, 熊军波, 张鹤山, 等. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133. | |
16 | Zhang J G, Tian F P, Miao H T, et al. Expressions of morphological and physiological features of 4 forage species under water stress and re-watering process. Arid Zone Research, 2020, 37(1): 193-201. |
张静鸽, 田福平, 苗海涛, 等. 水分胁迫及复水过程4种牧草形态及其生理特征表达. 干旱区研究, 2020, 37(1): 193-201. | |
17 | Liu M G, Wang Z K, Mu L, et al. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agricultural Water Management, 2021, 248: 106764. |
18 | Ma L. Situation and countermeasures of grass industry development in oasis area of Hexi corridor area-Jinchuan District of Jinchang City as an example. Lanzhou: Lanzhou University, 2017. |
马黎. 河西走廊绿洲区草产业发展现状及对策-以金昌市金昌区为例. 兰州: 兰州大学, 2017. | |
19 | Li C H, Zhu T B, Zhou M, et al. Temporal and spatial change of net primary productivity of vegetation and its determinants in Hexi Corridor. Acta Ecologica Sinica, 2021, 41(5): 1931-1943. |
李传华, 朱同斌, 周敏, 等. 河西走廊植被净初级生产力时空变化及其影响因子研究. 生态学报, 2021, 41(5): 1931-1943. | |
20 | Sheppard S C, Cattani D J, Ominski K H, et al. Sainfoin production in western Canada: A review of agronomic potential and environmental benefits. Grass and Forage Science, 2019, 74(1): 1-13. |
21 | Carbonero C H, Mueller-Harvey I, Brown T A, et al. Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genetic Resources, 2011, 9(1): 70-85. |
22 | Abtahi M, Majidi M M, Saeidnia F, et al. Genetic and physiological aspects of drought tolerance in smooth bromegrass. Crop Science, 2019, 59(6): 2601-2607. |
23 | Jiang Y B, Qi G P, Yin M H, et al. Effects of water regulation and planting patterns on soil moisture, yield and quality in artificial grassland. Journal of Soil and Water Conservation, 2022, 36(6): 260-270. |
姜渊博, 齐广平, 银敏华, 等. 水分调控与种植模式对人工草地土壤水分及产量品质的影响. 水土保持学报, 2022, 36(6): 260-270. | |
24 | Zhang Y L, Zhang L J, Yu T F, et al. Effects of grass-legume combinations and intercropping patterns on the forage yield and yield stability. Acta Agrestia Sinica, 2019, 27(5): 1410-1418. |
张永亮, 张丽娟, 于铁峰, 等. 禾豆组合与间作方式对牧草产量及产量稳定性的影响. 草地学报, 2019, 27(5): 1410-1418. | |
25 | Xiao R C, Kuang Y H, Zhang C P, et al. Comprehensive quality evaluation of Panax ginseng by entropy weight and grey incidence degree method. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(7): 4243-4248. |
肖日传, 匡艳辉, 张传平, 等. 基于熵权法和灰色关联度法的人参质量综合评价. 中华中医药杂志, 2021, 36(7): 4243-4248. | |
26 | Sun X, Zhang F C, Yang L, et al. Optimal combination of potassium fertilizer and drip irrigation for potato production based on entropy weight method and TOPSIS analysis. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 279-290. |
孙鑫, 张富仓, 杨玲, 等. 基于熵权法和TOPSIS法优化马铃薯钾肥种类和滴灌量组合. 植物营养与肥料学报, 2022, 28(2): 279-290. | |
27 | Magliano P N, Gimenez R, Houspanossian J, et al. Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. Ecohydrology, 2017, 10(7): e1879. |
28 | Liu H, Wei Y F, Jia L N E, et al. Stereoscopic planting mode and water consumption of grass pattern in north Xinjiang. Chinese Agricultural Science Bulletin, 2014, 30(23): 19-25. |
刘虎, 魏永富, 贾林努尔, 等. 北疆地区牧草高效立体种植模式与耗水规律研究. 中国农学通报, 2014, 30(23): 19-25. | |
29 | Chai Q, Yu A Z, Chen G P, et al. Soil evaporation under sole cropping and intercropping systems and the main driving factors. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1307-1312. |
柴强, 于爱忠, 陈桂平, 等. 单作与间作的棵间蒸发量差异及其主要影响因子. 中国生态农业学报, 2011, 19(6): 1307-1312. | |
30 | Tello-Garcia E, Huber L, Leitinger G, et al. Drought- and heat-induced shifts in vegetation composition impact biomass production and water use of Alpine grasslands. Environmental and Experimental Botany, 2019, 169: 103921. |
31 | Mariola S, Anna K. Forage grasses under drought stress in conditions of Poland. Acta Physiologiae Plantarum, 2015, 36: 116. |
32 | Yang H T, An F H, Yang F, et al. The impact of irrigation on yield of alfalfa and soil chemical properties of saline-sodic soils. PeerJ, 2019, 7: e7148. |
33 | Sun J C, Yang S, Wu Y K, et al. Niche and interspecific competitiveness of dominant herbage cultivar in aipine mixture artificial grassland. Acta Agrestia Sinica, 2022, 30(5): 1273-1279. |
孙建财, 杨沙, 武玉坤, 等. 高寒混播草地优势草种生态位与种间竞争力分析. 草地学报, 2022, 30(5): 1273-1279. | |
34 | Jahanzad E, Sadeghpour A, Hoseini M B, et al. Competition, nitrogen use efficiency, and productivity of millet-soybean intercropping in semiarid conditions. Crop Science, 2015, 55: 2842-2851. |
35 | Liu M, Gong J R, Wang Y H, et al. Effects of legume-grass mixed sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. |
刘敏, 龚吉蕊, 王忆慧, 等. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185. | |
36 | Sun K Z, Zou H X, Li Y F, et al. Effects of cutting times on the yield and quality of Lolium multiflorum in coastal areas of Jiangsu Province. Journal of Anhui Agricultural Sciences, 2020, 48(2): 106-108, 112. |
孙扣忠, 邹海祥, 李亚芳, 等. 刈割次数对江苏沿海地区多花黑麦草产量及品质的影响. 安徽农业科学, 2020, 48(2): 106-108, 112. | |
37 | Yu X X, Qi G P, Kang Y X, et al. Effect of irrigation mode on the yield and water consumption of mixed artificial grassland in alpine desert area. Water Resources Planning and Design, 2020, 33(3): 130-134, 178. |
余晓雄, 齐广平, 康燕霞, 等. 灌水模式对高寒荒漠区混播人工草地产量及耗水特性的影响. 水利规划与设计, 2020, 33(3): 130-134, 178. | |
38 | Diego N D, Saiz-Fernandez I, Rodriguez J L, et al. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. Journal of Plant Physiology, 2015, 188: 64-71. |
39 | Zhang Q B, Yu L, Lu W H, et al. Optimal irrigation regime improving yield and quality of alfalfa in year of sowing. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 116-122. |
张前兵, 于磊, 鲁为华, 等. 优化灌溉制度提高苜蓿种植当年产量及品质. 农业工程学报, 2016, 32(23): 116-122. | |
40 | Qi G P, Yin M H, Su P H, et al. Effects of water regulation on photosynthetic characteristics and water use of Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. Journal of Soil and Water Conservation, 2019, 33(6): 242-248, 256. |
齐广平, 银敏华, 苏鹏海, 等. 枸杞苜蓿间作模式下水分调控对枸杞光合特性与水分利用的影响. 水土保持学报, 2019, 33(6): 242-248, 256. | |
41 | Dhakal M, West C P, Villalobos C, et al. Interseeding alfalfa into native grassland for enhanced yield and water use efficiency. Agronomy Journal, 2020, 112: 1931-1942. |
42 | Sun H R, Ma L F, He S L, et al. Effect of irrigation amount on water use efficiency and water consumption coefficient of alfalfa. Acta Agrestia Sinica, 2008(6): 636-639, 645. |
孙洪仁, 马令法, 何淑玲, 等. 灌溉量对紫花苜蓿水分利用效率和耗水系数的影响. 草地学报, 2008(6): 636-639, 645. |
[1] | Mao-jian WANG, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area [J]. Acta Prataculturae Sinica, 2023, 32(3): 13-29. |
[2] | Wei GAO, Na SHOU, Cong-ze JIANG, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. Effect of nitrogen application rate on dry matter accumulation, allocation and water use efficiency of forage sorghum [J]. Acta Prataculturae Sinica, 2022, 31(9): 26-35. |
[3] | Da-liang ZHOU, Wei SHI, Zi-wei JIANG, Zheng-ye WEI, Huan-huan LIANG, Qian-min JIA. Effects of planting density and nitrogen application on leaf enzyme activity and water-nitrogen utilization of silage maize under ridge furrow rainwater harvesting in Loess Plateau [J]. Acta Prataculturae Sinica, 2022, 31(8): 126-143. |
[4] | Wei-ling NIU, Hui CHEN, Hui-xin HOU, Chen-rui GUO, Jiao-lin MA, Jian-shuang WU. Ten-year livestock exclusion did not affect water and nitrogen use efficiency of alpine desert-steppe plants in Northwest Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 35-48. |
[5] | Ji-cheng SHEN, Lei WANG, Cai-xia ZHAO, Fa-hui YE, Shi-kai LV, De-mei LIU, Rui-juan LIU, Huai-gang ZHANG, Wen-jie CHEN. Analysis of the grain related traits of 77 naked oat varieties [J]. Acta Prataculturae Sinica, 2022, 31(3): 156-167. |
[6] | Tao ZHOU, Le MU, Kai-qi SU, Jun-yu ZHANG, Hui-min YANG. Effects of intercropping ratio and regulated deficit irrigation on flag leaf traits of spring wheat at the grain filling stage in spring wheat-alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(10): 145-153. |
[7] | Lin CHEN, Gao-lu CHEN, Nai-ping SONG, Xue-bin LI, Hong-yun WAN, Wen-qiang HE. Response of photosynthetic characteristics and water use efficiency of Artemisia scoparia to rainfall changes in Eastern Ningxia desert steppe [J]. Acta Prataculturae Sinica, 2022, 31(10): 87-98. |
[8] | Jing-hai WANG, Guang LI, Min-hua YIN, Guang-ping QI, Yan-xia KANG, Yan-lin MA. Effects of regulated deficit irrigation on the soil environment and forage growth of mixed-species forage plantings in China’s high-cold desert area [J]. Acta Prataculturae Sinica, 2022, 31(1): 95-106. |
[9] | Gulnazar Ali, Hai-ning TAO, Zi-kui WANG, Yu-ying SHEN. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM [J]. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
[10] | He-shan ZHANG, Qiu GAO, Ting-ting ZHANG, Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Yang LIU. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense) [J]. Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
[11] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
[12] | Hui-xin JIANG, Shan-shan BAI, Bo WU, Jing-yi SONG, Guo-liang WANG. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China [J]. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
[13] | XIE De-jin, LI Jing-wen, YE You-jie, YIN Biao, REN Ke, CHEN Ling-yan, RONG Jun-dong, ZHENG Yu-shan. Effects of light quality on growth, and physiological and biochemical traits of Sarcandra glaba seedlings [J]. Acta Prataculturae Sinica, 2020, 29(8): 104-115. |
[14] | CAI Lu, WANG Lin-lin, LUO Zhu-zhu, LI Ling-ling, NIU Yi-ning, CAI Li-qun, XIE Jun-hong. Meta-analysis of alfalfa yield and WUE response to growing ages in China [J]. Acta Prataculturae Sinica, 2020, 29(6): 27-38. |
[15] | QIAN Zhi-hao, HAN Bing-fang, LIU Zi-ting, CAI Wei, FU Bing-zhe, MA Hong-bin. Effects of infiltration irrigation on growth characters and water use efficiency of alfalfa in the Ningxia Yellow River diversion irrigation area [J]. Acta Prataculturae Sinica, 2020, 29(3): 147-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||