Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 96-107.DOI: 10.11686/cyxb2023463
Previous Articles Next Articles
Cheng-qiang ZHU(), Shao-fu WEN, Run-hai JIANG, Mei ZHANG, Zhi-hong CAI, Yue-chen HE, Xin CHEN, Xiu-li HOU()
Received:
2023-11-30
Revised:
2023-12-25
Online:
2024-10-20
Published:
2024-07-15
Contact:
Xiu-li HOU
Cheng-qiang ZHU, Shao-fu WEN, Run-hai JIANG, Mei ZHANG, Zhi-hong CAI, Yue-chen HE, Xin CHEN, Xiu-li HOU. Effects of 3-indoleacetic acid on lead accumulation and physiological properties of Cynodon dactylon under lead stress[J]. Acta Prataculturae Sinica, 2024, 33(10): 96-107.
处理组 Treatment | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 胡萝卜素 Carotene (mg·g-1) | 最大光化学效率 Maximum quantum yield of PSII, Fv/Fm | 实际光化学效率 Practical efficiency, ΦPSⅡ | 相对电子传递速率 Electron transport rate, ETR |
---|---|---|---|---|---|---|
CK | 5.57±0.89bc | 2.10±0.26d | 1.23±0.17bc | 0.78±0.01ab | 0.71±0.01ab | 9.49±0.18b |
T1 | 6.30±0.35b | 2.45±0.07bc | 1.36±0.14ab | 0.80±0.01ab | 0.70±0.01abc | 9.27±0.94b |
T2 | 7.53±0.27a | 2.86±0.12a | 1.48±0.07a | 0.81±0.02a | 0.74±0.02a | 9.57±0.79b |
T3 | 5.90±0.81b | 2.54±0.42b | 1.14±0.21c | 0.78±0.03abc | 0.70±0.01abc | 12.87±0.79a |
T4 | 5.02±0.24c | 2.09±0.17cd | 1.13±0.03c | 0.77±0.01bc | 0.69±0.03bc | 7.65±0.68c |
T5 | 3.34±0.17d | 1.22±0.08e | 0.75±0.04d | 0.74±0.02c | 0.70±0.04abc | 6.28±0.85d |
Table 1 Effects of different concentrations of IAA and NPA on photosynthetic characteristics of C. dactylon under Pb stress
处理组 Treatment | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 胡萝卜素 Carotene (mg·g-1) | 最大光化学效率 Maximum quantum yield of PSII, Fv/Fm | 实际光化学效率 Practical efficiency, ΦPSⅡ | 相对电子传递速率 Electron transport rate, ETR |
---|---|---|---|---|---|---|
CK | 5.57±0.89bc | 2.10±0.26d | 1.23±0.17bc | 0.78±0.01ab | 0.71±0.01ab | 9.49±0.18b |
T1 | 6.30±0.35b | 2.45±0.07bc | 1.36±0.14ab | 0.80±0.01ab | 0.70±0.01abc | 9.27±0.94b |
T2 | 7.53±0.27a | 2.86±0.12a | 1.48±0.07a | 0.81±0.02a | 0.74±0.02a | 9.57±0.79b |
T3 | 5.90±0.81b | 2.54±0.42b | 1.14±0.21c | 0.78±0.03abc | 0.70±0.01abc | 12.87±0.79a |
T4 | 5.02±0.24c | 2.09±0.17cd | 1.13±0.03c | 0.77±0.01bc | 0.69±0.03bc | 7.65±0.68c |
T5 | 3.34±0.17d | 1.22±0.08e | 0.75±0.04d | 0.74±0.02c | 0.70±0.04abc | 6.28±0.85d |
1 | Zhang J D, Xi F R. Study on ecological restoration of abandoned mines in China. Acta Ecologica Sinica, 2020, 40(21): 7921-7930. |
张进德, 郗富瑞. 我国废弃矿山生态修复研究. 生态学报, 2020, 40(21): 7921-7930. | |
2 | Bandara T, Franks A, Xu J, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 2020, 50(9): 903-978. |
3 | Shahid M, Niazi N K, Rinklebe J, et al. Trace elements-induced phytohormesis: A critical review and mechanistic interpretation. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 1984-2015. |
4 | Saini S, Kaur N, Pati P K. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicology and Environmental Safety, 2021, 223(1): 112578. |
5 | Kong Y S, Xu H Y, Huang X H, et al. Relationship between leaf traits and photosynthetic efficiency of Ligustrum lucidum under Pb stress. Chinese Journal of Ecology, 2022, 41(10): 1881-1886. |
孔佑莎, 许洪扬, 黄鑫浩, 等. Pb胁迫下大叶女贞叶片性状与光合效率的关系. 生态学杂志, 2022, 41(10): 1881-1886. | |
6 | Chen Y T, Xu Z Z. Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. |
陈莹婷, 许振柱. 植物叶经济谱的研究进展. 植物生态学报, 2014, 38(10): 1135-1153. | |
7 | Ashraf U, Kanu A S, Mo Z, et al. Lead toxicity in rice: effects, mechanisms, and mitigation strategies—A mini review. Environmental Science and Pollution Research, 2015, 22(23): 18318-18332. |
8 | Zhang Q M, Gong M, Liu K, et al. Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Frontiers in Microbiology, 2020, 11: 1428. |
9 | Li N, Euring D, Cha J Y, et al. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 2021, 11: 627969. |
10 | Sun P, Tian Q Y, Chen J, et al. Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. Journal of Experimental Botany, 2010, 61(2): 347-356. |
11 | Luo J, Zhou J J, Zhang J Z. Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences, 2018, 19(1): 259. |
12 | Anfang M, Shani E. Transport mechanisms of plant hormones. Current Opinion in Plant Biology, 2021, 63: 102055. |
13 | Khare S, Singh N B, Niharika, et al. Phytochemicals mitigation of Brassica napus by IAA grown under Cd and Pb toxicity and its impact on growth responses of Anagallis arvensis. Journal of Biotechnology, 2022, 343: 83-95. |
14 | Piotrowska N A, Andrzej B, Elżbieta Z S, et al. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiology and Biochemistry, 2018, 132: 535-546. |
15 | Zhu X F, Wang Z W, Dong F, et al. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. Journal of Hazardous Materials, 2013, 263(2): 398-403. |
16 | Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136(6): 1005-1016. |
17 | Lu G W, Coneva V, Casaretto J A, et al. OsPIN5 bmodulates rice (Oryza sativa)plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal, 2015, 83(5): 913-925. |
18 | Fattorini L, Ronzan M, Piacentini D, et al. Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport. Environmental and Experimental Botany, 2017, 144: 37-48. |
19 | Ronzan M, Piacentini D, Fattorini L, et al. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environmental and Experimental Botany, 2018, 151: 64-75. |
20 | Yang Z, Xia J, Hong J, et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature, 2022, 609(7927): 611-615. |
21 | Matanzas N, Afif E, DÍaz T E, et al. Phytoremediation potential of native herbaceous plant species growing on a paradigmatic brown field site. Water, Air, and Soil Pollution, 2021, 232(7): 290. |
22 | Wang Z, Wu Y Q, Mao K. Research progress of Cynodon dactylon. Pratacultural Science, 2001, 18(5): 37-41. |
王赞, 吴彦奇, 毛凯. 狗牙根研究进展. 草业科学, 2001, 18(5): 37-41. | |
23 | Wang J, Cheng Q, Xue S, et al. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environmental Science and Pollution Research, 2018, 25(10): 9998-10005. |
24 | Yu F, Ma H T C, Zhong W X, et al. Effect of lead stress on the growth and physiological characteristics of Pogonatherum paniceum and Cynodon dactylon. Pratacultural Science, 2018, 35(11): 2602-2613. |
于飞, 马海天才, 钟沃秀, 等. 铅胁迫下金发草和狗牙根耐受性的对比. 草业科学, 2018, 35(11): 2602-2613. | |
25 | Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turf grasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180. |
李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. | |
26 | Zhang T T, Zhu Y X Y, Wu Y H, et al. Effects of exogenous IAA on physiological changes and cadmium tolerance of Trichosanthes kirilowii Maxim. under cadmium stress. Journal of Soil and Water Conservation, 2019, 33(4): 335-341. |
张婷婷, 朱叶心怡, 吴玉环, 等. 镉胁迫下外源IAA对栝楼生理变化和耐镉性的影响. 水土保持学报, 2019, 33(4): 335-341. | |
27 | Jin M, Liu Y, Shi B, et al. Exogenous IAA improves the seedling growth of Syringa villosa via regulating the endogenous hormones and enhancing the photosynthesis. Scientia Horticulturae, 2023, 308(27): 111585. |
28 | Zhan Y H, Zhang C H, Zheng Q X, et al. Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. Journal of Plant Biology, 2017, 60(6): 593-603. |
29 | Li B Z. The measurement of IAA oxidase in “Ping Guo Li” leaves. Spectroscopy and Spectral Analysis, 2001, 21(6): 837-839. |
李秉真. 苹果梨叶片中IAA氧化酶的测定. 光谱学与光谱分析, 2001, 21(6): 837-839. | |
30 | Jiang D C, Gao S, Gao H L, et al. The details of protein content determination by Coomassie brilliant blue staining. Experiment Science and Technology, 2018, 16(4): 119-123. |
蒋大程, 高珊, 高海伦, 等. 考马斯亮蓝法测定蛋白质含量中的细节问题. 实验科学与技术, 2018, 16(4): 119-123. | |
31 | He W Y, Yang X E, Yang J Y, et al. Effect of lead on plant availability of phosphorus and potassium in a vegetable-soil system. Environmental Science and Pollution Research, 2018, 25(34): 34793-34797. |
32 | Fatemi H, Esmaiel P B, Rizwan M. Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 2021, 28(2): 1417-1425. |
33 | Zeng F, Mallhi Z I, Khan N, et al. Combined citric acid and glutathione augments lead (Pb) stress tolerance and phytoremediation of Castorbean through antioxidant machinery and Pb uptake. Sustainability, 2021, 13(7): 4073. |
34 | Ma X L, Zhou H K, Zhang Z F. et al. The effects of exogenous IAA on seed germination and seedling growth of Onobrychis viciifolia Scop. under the drought stress. Acta Agrestia Sinica, 2023, 31(3): 796-803. |
马小兰, 周华坤, 张正芳, 等. 外源IAA对干旱胁迫下红豆草种子萌发及幼苗生长的影响. 草地学报, 2023, 31(3): 796-803. | |
35 | Ma L, Zhao Y, Chen M, et al. The microRNA ppe-miR393 mediates auxin-induced peach fruit softening by promoting ethylene production. Plant Physiology, 2023, 192(2): 1638-1655. |
36 | Talukdar M, Swain D K, Bhadoria P B S. Effect of IAA and BAP application in varying concentration on seed yield and oil quality of Guizotia abyssinica (L.f.) cass. Annals of Agricultural Sciences, 2022, 67(1): 15-23. |
37 | Moon J Y, Belloeil C, Ianna M L, et al. Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants. International Journal of Molecular Sciences, 2019, 20(2): 413. |
38 | Gong Q, Li Z, Wang L, et al. Exogenous of indole-3-acetic acid application alleviates copper toxicity in spinach seedlings by enhancing antioxidant systems and nitrogen metabolism. Toxics, 2020, 8(1): 1. |
39 | Shi W G, Liu W, Yu W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 2019, 362: 275-285. |
40 | Ojuederie O B. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health, 2017, 14(12): 1504. |
41 | Li J, Pan L, Pan W, et al. Recent progress of oxidative stress associated biomarker detection. Chemical Communications, 2023, 59(48): 7361-7374. |
42 | Simkin A J, Kapoor L, Doss C G P, et al. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research, 2022, 152(3): 23-42. |
43 | Li D, Zhang L, Chen M, et al. Defense mechanisms of two pioneer submerged plants during their optimal performance period in the bioaccumulation of lead: A comparative study. International Journal of Environmental Research and Public Health, 2018, 15(12): 2844. |
44 | Ai J X, Song J Y, Yan Z N, et al. Effects of melatonin on physiological response and DNA damage of Ardisia mamillata and A. crenata under lead stress. Chinese Bulletin of Botany, 2022, 57(2): 171-181. |
艾金祥, 宋嘉怡, 严浙楠, 等. 褪黑素对铅胁迫下虎舌红和朱砂根生理响应及DNA损伤的调控效应. 植物学报, 2022, 57(2): 171-181. | |
45 | Tan Z, Wu C, Xuan Z, et al. Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi (Brassica chinensis L.). Frontiers in Plant Science, 2022, 13: 1007276. |
46 | Tan Z, Xuan Z, Wu C, et al. Effects of selenium on the AsA-GSH system and photosynthesis of pakchoi (Brassica chinensis L.) under lead stress. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 5111-5122. |
47 | Lu T, Yu H, Li Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Frontiers in Plant Science, 2019, 10: 490. |
48 | Su L, Xie J, Wen W, et al. Interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via promoting proton motive force and reducing proton gradient in alfalfa. BMC Plant Biology, 2020, 20(1): 433. |
49 | Ayangbenro A S, Babalola O O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 2017, 14(1): 94. |
50 | Gharib F A E L, Ahmed E Z. Spirulina platensis improves growth, oil content, and antioxidant activity of rosemary plant under cadmium and lead stress. Scientific Reports, 2023, 13(1): 8008. |
51 | Mohamed H I, Latif H H, Hanafy R S. Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen, 2016, 68(2): 99-107. |
52 | Liu W C, Song R F, Zheng S Q, et al. Coordination of plant growth and abiotic stress responses by tryptophan synthase βSubunit 1 through modulating tryptophan and ABA homeostasis in Arabidopsis. Molecular Plant, 2022, 15(6): 973-990. |
53 | Park J, Lee S, Park G, et al. Cytokinin-responsive growth regulator regulates cell expansion and cytokinin-mediated cell cycle progression. Plant Physiology, 2021, 186(3): 1734-1746. |
54 | Hou M, Huo Y, Zhang Z Z, et al. Effects of exogenous vanadium stress on vanadium accumulation and subcellular distribution, and non-pro-teinthiol content in maize (Zea mays L.) crops. Journal of Agro-Environment Science, 2020, 39(5): 964-972. |
侯明, 霍岩, 张志专, 等. 土壤外源钒施加对玉米中钒积累, 亚细胞分布和非蛋白巯基含量的影响. 农业环境科学学报, 2020, 39(5): 964-972. | |
55 | Guo B, Liu C, Liang Y, et al. Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 2019, 20(12): 2960. |
56 | Sudhakar S, Kumar S A, Penna S, et al. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Journal of Experimental Botany, 2013, 64(1): 303-315. |
57 | Piotrowska-niczyporuk A, Bajguz A, Kotowska U, et al. Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Scientific Reports, 2020, 10(1): 10193. |
58 | Gong W, Long J, Wu Y, et al. Application of NPA restrained leaf expansion by reduced cell division in soybean under shade stress. Journal of Plant Growth Regulation, 2022, 41(8): 3345-3358. |
[1] | Xin-yu CHENG, Ji-lian WANG, Mairiyangu·Yasheng, Ming-yuan LI. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum [J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121. |
[2] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[3] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[4] | Ting-lun LI, Yi-heng LI, Hui YU, Zai-li JIANG, Li-tao TANG, Chang-ting WANG, Lei HU. Effects of the lead halide perovskite on the seedling growth of Elymus nutans [J]. Acta Prataculturae Sinica, 2023, 32(12): 160-170. |
[5] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[6] | Yong-gang CHEN, Wen-juan KANG, Fang WU, Yun A, Shang-li SHI, Cui-mei ZHANG, Zi-li LI. Boron promotes secretion of extracellular polysaccharides and indole-3-acetic acid by Rhizobium [J]. Acta Prataculturae Sinica, 2021, 30(5): 42-51. |
[7] | Ning ZHANG, Yun-xin CAO, Wei XU, Zhi-hui CAHNG. Effects of biosolids on the growth and auxin metabolism of Poa pratensis under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(3): 167-176. |
[8] | LI Ke, SHI Chong, HE Fei-yan, LI Hao-yu. Effects of endophyte infection on growth and physiological characteristics of Melica transsilvanica under Pb stress [J]. Acta Prataculturae Sinica, 2020, 29(3): 112-120. |
[9] | HAN Hang, CHEN Shun-yu, XUE Ling-yun, HOU Xiao-long, CAI Li-ping, LIU Ai-qin, ZHOU Chui-fan. Effects of lead stress on growth and physiology of Pogonatherum crinitum [J]. Acta Prataculturae Sinica, 2018, 27(4): 131-138. |
[10] | SHU Jian-Hong, WANG Pu-Chang, LI Xian-Gang, WANG Xiao-Li, LI Xiao-Dong. Isolation and screening of inorganic phosphate-solubilizing bacteria and their effect on the growth of Bromus cartharticus [J]. Acta Prataculturae Sinica, 2017, 26(5): 173-180. |
[11] | LEI Xue-jun,WU Yi,HUANG Xin,CAI Jian-bo,LI Zhuo,WU Lin-shi. Phosphate dissolving capability and the affect of phosphate-dissolving bacteria in the rhizosphere on Sorghum bicolor [J]. Acta Prataculturae Sinica, 2014, 23(6): 274-278. |
[12] | LI Xi,WU Ya-jiao,SUN Ling-xia. Growth and physiological responses of three warm-season turfgrasses to lead stress [J]. Acta Prataculturae Sinica, 2014, 23(4): 171-180. |
[13] | ZHANG Ying, ZHU Ying, YAO Tuo,QI Juan, RONG Liang-yan. Interactions of four PGPRs isolated from pasture rhizosphere [J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37. |
[14] | YE Shao-ping, ZENG Xiu-hua, XIN Guo-rong, BAI Chang-jun, LUO Ren-feng, LIU Xin-lu. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels [J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52. |
[15] | HUANG Chun-qiong, LIU Guo-dao, BAI Chang-jun, WANG Wen-qiang, TANG Jun, YU Dao-geng. A study on the morphological diversity of 475 accessions of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2012, 21(4): 33-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||