Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (1): 192-205.DOI: 10.11686/cyxb2025061
Lang SUN1,2(
), Yan-ping REN1,2, Muzepar NAFISA1,2, Neng-shuang SHEN1,2, Li MA1,2, Cong CHENG1,2, Li LI1,2, Hua ZHANG1,2(
)
Received:2025-03-04
Revised:2025-04-21
Online:2026-01-20
Published:2025-11-13
Contact:
Hua ZHANG
Lang SUN, Yan-ping REN, Muzepar NAFISA, Neng-shuang SHEN, Li MA, Cong CHENG, Li LI, Hua ZHANG. Identification of the WOX transcription factor family in Haloxylon ammodendron and functional analyses of the roles of HaWOX29 and HaWOX54 in root growth[J]. Acta Prataculturae Sinica, 2026, 35(1): 192-205.
基因 Gene | 正向引物 Forward primer (5′→3′) | 反向引物 Reverse primer (5′→3′) | 用途 Usage |
|---|---|---|---|
| HaWOX29 | ATGATGATGAACAAACGAAGGTTCAC | TCAGGACCAAAAGTCCCACCA | 克隆Cloning |
| HaWOX54 | ATGCAAGGTGGTGAAGATAATACAGTG | TTACATTTGATAAAAGTCAGCCCAATCCA | 克隆Cloning |
| Ha18SrRNA | CTCTGCCCGTTGCTCTGATGAT | CCTTGGATGTGGTAGCCGTTTC | qRT-PCR |
| HaWOX29 | AGCTCGTTACAAGTCTAAGCAAC | AGATCCTCGAATCGTTTAGCAAG | qRT-PCR |
| HaWOX54 | CCCAACAAATGCCTCCACAACA | TACTGCCCTCACTCTTGCTCT | qRT-PCR |
| pCAMBIA3301-HaWOX29 | TGACCATGGTAGATCTATGATGATGAACAAACGAAGGTTCACTG | ATTCGAGCTGGTCACCTCAGGACCAAAAGTCCCACCATTG | 同源重组Homologous recombination |
| pCAMBIA3301-HaWOX54 | TGACCATGGTAGATCTATGCAAGGTGGTGAAGATAATACAGTGG | ATTCGAGCTGGTCACCTTACATTTGATAAAAGTCAGCCCAATCCATACT | 同源重组Homologous recombination |
| PGBKT7-HaWOX29 | CATGGAGGCCGAATTCATGATGATGAACAAACGAAGGTTCACTG | GCAGGTCGACGGATCCTCAGGACCAAAAGTCCCACCATTG | 同源重组Homologous recombination |
| PGBKT7-HaWOX54 | CATGGAGGCCGAATTCATGCAAGGTGGTGAAGATAATACAGT | GCAGGTCGACGGATCCTTACATTTGATAAAAGTCAGCCCAATCCATACT | 同源重组Homologous recombination |
Table 1 Primers used in this study
基因 Gene | 正向引物 Forward primer (5′→3′) | 反向引物 Reverse primer (5′→3′) | 用途 Usage |
|---|---|---|---|
| HaWOX29 | ATGATGATGAACAAACGAAGGTTCAC | TCAGGACCAAAAGTCCCACCA | 克隆Cloning |
| HaWOX54 | ATGCAAGGTGGTGAAGATAATACAGTG | TTACATTTGATAAAAGTCAGCCCAATCCA | 克隆Cloning |
| Ha18SrRNA | CTCTGCCCGTTGCTCTGATGAT | CCTTGGATGTGGTAGCCGTTTC | qRT-PCR |
| HaWOX29 | AGCTCGTTACAAGTCTAAGCAAC | AGATCCTCGAATCGTTTAGCAAG | qRT-PCR |
| HaWOX54 | CCCAACAAATGCCTCCACAACA | TACTGCCCTCACTCTTGCTCT | qRT-PCR |
| pCAMBIA3301-HaWOX29 | TGACCATGGTAGATCTATGATGATGAACAAACGAAGGTTCACTG | ATTCGAGCTGGTCACCTCAGGACCAAAAGTCCCACCATTG | 同源重组Homologous recombination |
| pCAMBIA3301-HaWOX54 | TGACCATGGTAGATCTATGCAAGGTGGTGAAGATAATACAGTGG | ATTCGAGCTGGTCACCTTACATTTGATAAAAGTCAGCCCAATCCATACT | 同源重组Homologous recombination |
| PGBKT7-HaWOX29 | CATGGAGGCCGAATTCATGATGATGAACAAACGAAGGTTCACTG | GCAGGTCGACGGATCCTCAGGACCAAAAGTCCCACCATTG | 同源重组Homologous recombination |
| PGBKT7-HaWOX54 | CATGGAGGCCGAATTCATGCAAGGTGGTGAAGATAATACAGT | GCAGGTCGACGGATCCTTACATTTGATAAAAGTCAGCCCAATCCATACT | 同源重组Homologous recombination |
基因名称 Gene name | 元件名称 Component name | 核心序列 Core sequence | 元件位置 Component location | 参考物种 Reference species | 元件功能 Component function |
|---|---|---|---|---|---|
| HaWOX29 | GATA基序GATA-motif | AAGGATAAGG | 451(-) | 马铃薯Solanum tuberosum | 参与部分光响应元件Part of a light responsive element |
| CAT框CAT-box | GCCACT | 98(-) | 拟南芥A. thaliana | 调控分生组织元件Element related to meristem expression | |
| MYB结合位点MYB binding site | CAACTG | 282(+) | 拟南芥A. thaliana | 参与干旱响应元件Participate in drought response elements | |
| HaWOX54 | TGACG基序TGACG-motif | TGACG | 466(-) | 大麦H. vulgare | 参与茉莉酸甲酯响应元件Element involved in the MeJA-responsiveness |
| CGTCA基序CGTCA-motif | CGTCA | 466(+) | 大麦H. vulgare | 参与茉莉酸甲酯响应元件Element involved in the MeJA-responsiveness | |
| ABA反应元件ABA responsive element | ACGTG | 613(+) | 拟南芥A. thaliana | 参与脱落酸反应Involved in the abscisic acid responsiveness |
Table 2 Prediction of cis-acting elements in promoters
基因名称 Gene name | 元件名称 Component name | 核心序列 Core sequence | 元件位置 Component location | 参考物种 Reference species | 元件功能 Component function |
|---|---|---|---|---|---|
| HaWOX29 | GATA基序GATA-motif | AAGGATAAGG | 451(-) | 马铃薯Solanum tuberosum | 参与部分光响应元件Part of a light responsive element |
| CAT框CAT-box | GCCACT | 98(-) | 拟南芥A. thaliana | 调控分生组织元件Element related to meristem expression | |
| MYB结合位点MYB binding site | CAACTG | 282(+) | 拟南芥A. thaliana | 参与干旱响应元件Participate in drought response elements | |
| HaWOX54 | TGACG基序TGACG-motif | TGACG | 466(-) | 大麦H. vulgare | 参与茉莉酸甲酯响应元件Element involved in the MeJA-responsiveness |
| CGTCA基序CGTCA-motif | CGTCA | 466(+) | 大麦H. vulgare | 参与茉莉酸甲酯响应元件Element involved in the MeJA-responsiveness | |
| ABA反应元件ABA responsive element | ACGTG | 613(+) | 拟南芥A. thaliana | 参与脱落酸反应Involved in the abscisic acid responsiveness |
株系 Plants | 总根长 Total root length (cm) | 表面积 Surface area (cm2) | 根直径 Root diameter (mm) | 根体积 Root volume (mm2) | 根尖数 Number of root tips | 分支数 Number of branches |
|---|---|---|---|---|---|---|
| pCAMBIA3301 | 4.90±0.96c | 1.99±0.68c | 0.95±0.21b | 0.47±0.12c | 31.00±11.79c | 59.33±11.37c |
| OE-HaWOX29 | 12.19±1.56a | 2.74±0.68b | 1.00±0.19a | 1.18±0.30a | 44.33±12.86b | 75.33±46.36b |
| OE-HaWOX54 | 10.17±1.26b | 7.63±1.84a | 0.88±0.18c | 0.90±0.12b | 162.00±68.43a | 257.33±48.60a |
Table 3 Root system indicators of H. ammodendron
株系 Plants | 总根长 Total root length (cm) | 表面积 Surface area (cm2) | 根直径 Root diameter (mm) | 根体积 Root volume (mm2) | 根尖数 Number of root tips | 分支数 Number of branches |
|---|---|---|---|---|---|---|
| pCAMBIA3301 | 4.90±0.96c | 1.99±0.68c | 0.95±0.21b | 0.47±0.12c | 31.00±11.79c | 59.33±11.37c |
| OE-HaWOX29 | 12.19±1.56a | 2.74±0.68b | 1.00±0.19a | 1.18±0.30a | 44.33±12.86b | 75.33±46.36b |
| OE-HaWOX54 | 10.17±1.26b | 7.63±1.84a | 0.88±0.18c | 0.90±0.12b | 162.00±68.43a | 257.33±48.60a |
| [1] | Song J, Feng G, Tian C Y, et al. Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Science, 2006, 170(1): 113-119. |
| [2] | Zhao X J, Liu Y. The ecological value and economic value of honeycomb juniper. Inner Mongolia Forestry, 2003(3): 39. |
| 赵小军, 刘宇. 梭梭的生态价值与经济价值. 内蒙古林业, 2003(3): 39. | |
| [3] | Li Y, Xu H. Water and carbon balances of Haloxylon ammodendron: intergated study at physiological, plant abd community level. Arid Land Geography, 2008, 31(3): 313-323. |
| 李彦, 许皓. 梭梭对降水的响应与适应机制——生理、个体与群落水平碳水平衡的整合研究. 干旱区地理, 2008, 31(3): 313-323. | |
| [4] | Huang Y, Guo Y H. Root distribution characteristics of Haloxylon ammodendron (Mey.) Bunge plantation. Acta Agrestia Sinica, 2009, 17(1): 84-87. |
| 黄勇, 郭玉海. 人工梭梭林根系的分布特征. 草地学报, 2009, 17(1): 84-87. | |
| [5] | Sheng J H, Qiao Y X, Liu H Y, et al. A study on the root system of Haloxylon ammodendron (C.A.Mey.) Bunge. Acta Agrestia Sinica, 2004, 12(2): 91-94. |
| 盛晋华, 乔永祥, 刘宏义, 等. 梭梭根系的研究. 草地学报, 2004, 12(2): 91-94. | |
| [6] | Chen Y C, Li M, Wu M C, et al. Structure and composition of roots in two species of Haloxylon Bunge. Plant Physiology Journal, 2013, 49(11): 1273-1276. |
| 陈虞超, 李苗, 吴明朝, 等. 梭梭属两种植物的根结构和成分. 植物生理学报, 2013, 49(11): 1273-1276. | |
| [7] | Zhang H, Sha R T Y, Xing Y K, et al. Research and application prospects of artificial control techniques for Cistanche deserticola parasitism. Inner Mongolia Forestry, 2024(9): 43-46. |
| 张慧, 莎仁图雅, 邢钰坤, 等. 肉苁蓉人工控制寄生技术研究及应用展望. 内蒙古林业, 2024(9): 43-46. | |
| [8] | Zhang Z, Meng J P, Song Z Y. Research on cutting propagation techniques for five desert plants. Journal of Green Science and Technology, 2015(7): 85-86. |
| 张祯, 孟军萍, 宋志云. 5种沙生植物扦插育苗技术研究. 绿色科技, 2015(7): 85-86. | |
| [9] | Wang P, Man L J, Ma L, et al. In vitro regeneration of Haloxylon ammodendron. Notulae Scientia Biologicae, 2023, 15(2): 11585. |
| [10] | Zhang T, Ge Y C, Cai G, et al. WOX-ARF modules initiate different types of roots. Cell Reports, 2023, 42(8): 112966. |
| [11] | Chen X, Hou Y, Cao Y, et al. A comprehensive identification and expression analysis of the WUSCHEL homeobox-containing protein family reveals their special role in development and abiotic stress response in Zea mays L. International Journal of Molecular Sciences, 2024, 25(1): 441. |
| [12] | Chen R R, Xu N, Yu B, et al. The WUSCHEL-related homeobox transcription factor OsWOX4 controls the primary root elongation by activating OsAUX1 in rice. Plant Science, 2020, 298: 110575. |
| [13] | Li Z L. Study on regulation of adventitious root formation by BpWOX11 gene in Betula platyphylla. Harbin: Northeast Forestry University, 2023. |
| 李政纶. 白桦BpWOX11基因调控不定根发生的研究. 哈尔滨: 东北林业大学, 2023. | |
| [14] | Wang L Q, Li Z, Wen S S, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. Journal of Experimental Botany, 2020, 71(4): 1503-1513. |
| [15] | Ren C. Study of fruit development morphology, drought transcriptome and functional analysis of HaHSFA1, HaNAC2 genes on Haloxylon ammodendron. Nanjing: Nanjing Agricultural University, 2016. |
| 任财. 梭梭果实发育形态、幼苗干旱胁迫转录组及HaHSFA1和HaNAC2基因功能研究. 南京: 南京农业大学, 2016. | |
| [16] | Wang P. A preliminary study on the mechanism related to the in vitro regeneration and genetic transformation of Haloxylon ammodendron. Urumqi: Xinjiang Agricultural University, 2023. |
| 王萍. 梭梭离体再生机理研究及遗传转化的初探. 乌鲁木齐: 新疆农业大学, 2023. | |
| [17] | Zhang H, Nafisa M Z P E, Ren Y P, et al. A method for the construction of Agrobacterium-mediated genetic transformation system of Haloxylon ammodendron seeds: CN202410756609.5. 2024-09-10. https://www.patent9.com/patent/202410756609.5.html. |
| 张桦, 娜菲莎·木则帕尔, 任燕萍, 等. 农杆菌介导的梭梭种子遗传转化体系构建的方法: 202410756609.5. 2024-09-10.https://www.patent9.com/patent/202410756609.5.html. | |
| [18] | Li J L, Qiu L Z, Xie H, et al. Teaching experiment design for analyzing root growth of wheat seedling under heavy metal stress by Win-RHIZO system. Experimental Technology and Management, 2022, 39(7): 191-195. |
| 李俊丽, 邱凌之, 谢浩, 等. 利用Win-RHIZO系统分析重金属胁迫下小麦幼苗根系生长状况教学实验设计. 实验技术与管理, 2022, 39(7): 191-195. | |
| [19] | Riccucci E, Vanni C, Vangelisti A, et al. Genome-wide analysis of WOX multigene family in sunflower (Helianthus annuus L.). International Journal of Molecular Sciences, 2023, 24(4): 3352. |
| [20] | Chen K, Wang H, Chen Y T, et al. Functional analysis of WOX family genes in Dendrobium catenatum during growth and development. Hereditas, 2023, 45(8): 700-714. |
| [21] | Kong X P, Lu S C, Tian H Y, et al. WOX5 is shining in the root stem cell niche. Trends in Plant Science, 2015, 20(10): 601-603. |
| [22] | Li J L, Chen Y, Wang Z W, et al. Genome-wide identification and expression of WOX gene family in Brassica rapa. Molecular Plant Breeding, (2024-11-21)[2025-05-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20241121.1007.002.html. |
| 李嘉利, 陈雨, 王紫雯, 等. 白菜WOX基因家族的鉴定与表达. 分子植物育种, (2024-11-21)[2025-05-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20241121.1007.002.html. | |
| [23] | Kang J Y, Chi X F, Shen P, et al. Identification of WOX family genes in Lagerstroemia indica and their effects on callus induction. Journal of Agricultural Biotechnology, 2024, 32(10): 2255-2264. |
| 康佳音, 池秀凤, 申萍, 等. 紫薇WOX家族基因鉴定及其对愈伤诱导的影响. 农业生物技术学报, 2024, 32(10): 2255-2264. | |
| [24] | Chen L, Wang W T, Pu Y Y, et al. Identification and expression analysis of WOX gene family in Brassica napus. Acta Agriculturae Boreali-Occidentalis Sinica, 2023, 32(8): 1173-1186. |
| 陈玲, 王旺田, 蒲媛媛, 等. 甘蓝型油菜WOX基因家族的鉴定与表达分析. 西北农业学报, 2023, 32(8): 1173-1186. | |
| [25] | Feng S S, Wang L, Zhou Y, et al. Research progresses on WOX family genes in regulating plant development and abiotic stress responses. Biotechnology Bulletin, 2023, 39(5): 1-13. |
| 冯珊珊, 王璐, 周益, 等. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展. 生物技术通报, 2023, 39(5): 1-13. | |
| [26] | Yang X, Xu Y H, Wei J H, et al. Advances on the biosynthesis pathways and molecular regulation mechanism of several important defensive substances in plant secondary metabolism. Letters in Biotechnology, 2013, 24(2): 285-289. |
| 杨欣, 徐艳红, 魏建和, 等. 几种重要植物次生代谢防御反应物质的生物合成途径及分子调控机制研究进展. 生物技术通讯, 2013, 24(2): 285-289. | |
| [27] | Chen C H, Chuan X J, Wang H, et al. Factors affecting genetic transformation efficiency for stylo (Stylosanthes guianensis) with Agrobacterium tumefaciens. Acta Prataculturae Sinica, 2016, 25(6): 102-108. |
| 陈彩虹, 钏秀娟, 王荟, 等. 农杆菌侵染条件对柱花草遗传转化效率的影响. 草业学报, 2016, 25(6): 102-108. | |
| [28] | Liu J C, Sheng L H, Xu Y Q, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell, 2014, 26(3): 1081-1093. |
| [29] | Meng J H, Liu H C, Wu Z, et al. Effects of PsWOX11 on lateral root growth and development of Populus simonii. Forest Research, 2024, 37(6): 54-61. |
| 孟佳慧, 刘宏超, 武志, 等. 小叶杨PsWOX11基因对侧根生长发育的影响. 林业科学研究, 2024, 37(6): 54-61. | |
| [30] | Kawai T, Shibata K, Akahoshi R, et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2101846119. |
| [1] | Yuan-yuan LIU, Xu WANG, Qi WEI, Li-juan CHE, Meng YUAN, Bo WANG. The role of HaFT-9, a 14-3-3 protein from Haloxylon ammodendron, in the cross regulation of high temperature and drought stress [J]. Acta Prataculturae Sinica, 2025, 34(9): 134-146. |
| [2] | Zhen-zhen TAN, Xia-xiang ZHANG, Zhi-min YANG. Research advances in heat resistance of cool-season turfgrasses [J]. Acta Prataculturae Sinica, 2021, 30(9): 193-202. |
| [3] | Lu-yao WU, Jian-guo ZHANG, Wen-qian CHANG, Shao-lei ZHANG, Qing CHANG. Diurnal change in chlorophyll fluorescence parameters in three desert plants [J]. Acta Prataculturae Sinica, 2021, 30(9): 203-213. |
| [4] | TAO Ye, ZHANG Yuan-ming. Multi-scale biomass estimation of desert shrubs: a case study of Haloxylon ammodendron in the Gurbantunggut Desert, China [J]. Acta Prataculturae Sinica, 2013, 22(6): 1-10. |
| [5] | LI Xing, JIANG Jin, SONG Chun-wu, MIN Shou-jun, ZHANG Heng, JIANG You-wei. Effect of super absorbent polymer on the growth and root morphology of Haloxylon ammodendron seedlings [J]. Acta Prataculturae Sinica, 2012, 21(6): 51-56. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||