Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (1): 179-191.DOI: 10.11686/cyxb2025045
Bin CHEN(
), Yan-ting LIU, Sheng-yan CHEN, Qing XUE, Meng-yu LI, Ji-jia WANG, Ying SUN, Miao HE(
)
Received:2025-02-18
Revised:2025-04-07
Online:2026-01-20
Published:2025-11-13
Contact:
Miao HE
Bin CHEN, Yan-ting LIU, Sheng-yan CHEN, Qing XUE, Meng-yu LI, Ji-jia WANG, Ying SUN, Miao HE. Bioinformatics analysis of CiMYB4 in Chrysanthemum indicum var. aromaticum and functional characterization of its role in drought resistance[J]. Acta Prataculturae Sinica, 2026, 35(1): 179-191.
| 引物名称Primer name | 引物序列Primer sequence (5′-3′) |
|---|---|
| CiMYB4-2001-F (P-F) | GATTACGCC |
| CiMYB4-1764 (P1-F) | GATTACGCC |
| CiMYB4-1299 (P2-F) | GATTACGCC |
| CiMYB4-954 (P3-F) | GATTACGCC |
| CiMYB4-417 (P4-F) | GATTACGCC |
| CiMYB4-2001-R (P-R) | ACCACCCGG |
Table 1 Promoter clone primers’ sequence
| 引物名称Primer name | 引物序列Primer sequence (5′-3′) |
|---|---|
| CiMYB4-2001-F (P-F) | GATTACGCC |
| CiMYB4-1764 (P1-F) | GATTACGCC |
| CiMYB4-1299 (P2-F) | GATTACGCC |
| CiMYB4-954 (P3-F) | GATTACGCC |
| CiMYB4-417 (P4-F) | GATTACGCC |
| CiMYB4-2001-R (P-R) | ACCACCCGG |
类别 Category | 名称 Name | 核心序列 Core sequence | 功能 Function | 数量 Amount |
|---|---|---|---|---|
| 结构元件Structure elements | TATA-box | TATA | 核心启动子元件Core promoter element | 50 |
| CAAT-box | CAA(A)T | 启动子和增强子区域调控元件Regulatory element in promoter and enhancer regions | 35 | |
| 激素响应元件Phytohormone responsive elements | ABRE | ACGTG | 脱落酸响应元件Abscisic acid responsive element | 3 |
| AAGAA-motif | GTAAAGAAA | 脱落酸响应元件Abscisic acid responsive element | 1 | |
| TGA-element | AACGAC | 生长素响应元件Auxin acid responsive element | 1 | |
| 胁迫响应元件Abiotic stress responsive elements | LTR | AAAGCC | 低温响应元件Low temperature responsive element | 1 |
| STRE | AGGGG | 干旱胁迫响应元件Drought stress responsive element | 3 | |
| TC-rich repeats | ATTTTCTT | 防卫和胁迫响应元件Defense and stress responsive element | 2 | |
| 光响应元件Light responsive elements | G-box | (T)CACGTG(T) | 光响应元件Light responsive element | 2 |
| GATA-motif | AAGGATAAGG | 光响应元件Light responsive element | 1 | |
| GT1-motif | GGTTAA | 光响应元件Light responsive element | 3 | |
| I-box | CCTTATCCT | 光响应元件Light responsive element | 1 | |
| Box 4 | ATTAAT | 光响应元件Light responsive element | 2 | |
| chs-CMA1a | TTACTTAA | 光响应元件Light responsive element | 1 | |
| MRE | AACCTAA | 光响应元件Light responsive element | 1 | |
| 生长发育调控元件Development-related elements | CAT-box | GCCACT | 分生组织表达元件Meristem expression element | 1 |
| 功能未知元件Function unknown elements | MYB CORE | TAACCA、CAACAG | MYB结合位点MYB binding site | 7 |
| MYC CORE | CATTTG、CAATTG | MYC结合位点MYC binding site | 3 | |
| A-box | CCGTCC | 未知功能元件Function unknown element | 2 | |
| AT~TATA-box | TATATA | 未知功能元件Function unknown element | 1 |
Table 2 Cis-acting elements of CiMYB4 promoter
类别 Category | 名称 Name | 核心序列 Core sequence | 功能 Function | 数量 Amount |
|---|---|---|---|---|
| 结构元件Structure elements | TATA-box | TATA | 核心启动子元件Core promoter element | 50 |
| CAAT-box | CAA(A)T | 启动子和增强子区域调控元件Regulatory element in promoter and enhancer regions | 35 | |
| 激素响应元件Phytohormone responsive elements | ABRE | ACGTG | 脱落酸响应元件Abscisic acid responsive element | 3 |
| AAGAA-motif | GTAAAGAAA | 脱落酸响应元件Abscisic acid responsive element | 1 | |
| TGA-element | AACGAC | 生长素响应元件Auxin acid responsive element | 1 | |
| 胁迫响应元件Abiotic stress responsive elements | LTR | AAAGCC | 低温响应元件Low temperature responsive element | 1 |
| STRE | AGGGG | 干旱胁迫响应元件Drought stress responsive element | 3 | |
| TC-rich repeats | ATTTTCTT | 防卫和胁迫响应元件Defense and stress responsive element | 2 | |
| 光响应元件Light responsive elements | G-box | (T)CACGTG(T) | 光响应元件Light responsive element | 2 |
| GATA-motif | AAGGATAAGG | 光响应元件Light responsive element | 1 | |
| GT1-motif | GGTTAA | 光响应元件Light responsive element | 3 | |
| I-box | CCTTATCCT | 光响应元件Light responsive element | 1 | |
| Box 4 | ATTAAT | 光响应元件Light responsive element | 2 | |
| chs-CMA1a | TTACTTAA | 光响应元件Light responsive element | 1 | |
| MRE | AACCTAA | 光响应元件Light responsive element | 1 | |
| 生长发育调控元件Development-related elements | CAT-box | GCCACT | 分生组织表达元件Meristem expression element | 1 |
| 功能未知元件Function unknown elements | MYB CORE | TAACCA、CAACAG | MYB结合位点MYB binding site | 7 |
| MYC CORE | CATTTG、CAATTG | MYC结合位点MYC binding site | 3 | |
| A-box | CCGTCC | 未知功能元件Function unknown element | 2 | |
| AT~TATA-box | TATATA | 未知功能元件Function unknown element | 1 |
| [1] | Gao S Z, Chen X H, Lin M H, et al. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. Forestry Research, 2024, 4(1): e022. |
| [2] | Yu Z H, Chen X S, Chen Z W, et al. BcSRC2 interacts with BcAPX4 to increase ascorbic acid content for responding ABA signaling and drought stress in pak-choi. Horticulture Research, 2024, 11(8): uhae165. |
| [3] | Lynch J P. Rightsizing root phenotypes for drought resistance. Journal of Experimental Botany, 2018, 69(13): 3279-3292. |
| [4] | Li L L, Zhu H L, Ju Y Q, et al. Comparison of microstructure and physiological response of the leaves of six Rosa rugosa genotypes under drought stress. Ornamental Plant Research, 2024, 4(1): e016. |
| [5] | Li J Y, Ren J J, Lei X Y, et al. CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought. Cell Reports, 2024, 43(4): 113987. |
| [6] | He L Y, Tan M M, Che H T, et al. Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum. Acta Prataculturae Sinica, 2025, 34(1): 161-173. |
| 贺龙义, 谭萌萌, 车海涛, 等. 细叶百合LpDREB9基因克隆及耐旱性分析. 草业学报, 2025, 34(1): 161-173. | |
| [7] | Lim C, Kang K, Shim Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology, 2022, 188(4): 1900-1916. |
| [8] | Zhao P P, Zhao M, Gao X Y, et al. GhWRKY1bD improves drought tolerance by co-regulation of ABA, ROS, and proline homeostasis in cotton (Gossypium hirsutum). Industrial Crops and Products, 2024, 220(1): 119179. |
| [9] | Ge M M, Tang Y, Guan Y J, et al. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC Plant Biology, 2024, 24(1): 27. |
| [10] | Liu J T, Wang Y Q, Ye X R, et al. Genome-wide identification and expression analysis of the WRKY gene family in response to low-temperature and drought stresses in Cucurbita pepo L. Scientia Horticulture, 2024, 330(1): 113048. |
| [11] | Luo Y R, Xu X Y, Yang L F, et al. A R2R3-MYB transcription factor, FeR2R3-MYB, positively regulates anthocyanin biosynthesis and drought tolerance in common buckwheat (Fagopyrum esculentum). Plant Physiology and Biochemistry, 2024, 217(1): 109254. |
| [12] | Fan K, Wu Y C, Mao Z J, et al. A novel NAC transcription factor ZmNAC55 negatively regulates drought stress in Zea mays. Plant Physiology and Biochemistry, 2024, 214(1): 108938. |
| [13] | Yang X Z, Li X, Wang X, et al. Genome-wide identification and characterization of bZIP gene family explore the responses of PsebZIP44 and PsebZIP46 in Pseudoroegneria libanotica under drought stress. BMC Plant Biology, 2024, 24(1): 1-15. |
| [14] | Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110. |
| [15] | Ren Z Z, Zhang P Y, Su H H, et al. Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings. Plant Physiology and Biochemistry, 2024, 211(1): 108696. |
| [16] | Yang B C, Song Z H, Li C N, et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genetics, 2018, 14(12): e1007839. |
| [17] | Li Q, Kang F, Xue Q, et al. Functional analysis of the R2R3-MYB transcription factor CiMYB4 of Chrysanthemum indicum var. aromaticum in response to cadmium stress. Acta Prataculturae Sinica, 2024, 33(5): 128-142. |
| 李强, 康璠, 薛晴, 等. 神农香菊R2R3-MYB转录因子CiMYB4在镉胁迫中的功能分析. 草业学报, 2024, 33(5): 128-142. | |
| [18] | Zhou X, Lei D Y, Yao W T, et al. A novel R2R3-MYB transcription factor PbMYB1L of Pyrus bretschneideri regulates cold tolerance and anthocyanin accumulation. Plant Cell Reports, 2024, 43(2): 34. |
| [19] | Zhu N, Duan B L, Zheng H L, et al. An R2R3-MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiology and Biochemistry, 2023, 197(1): 107648. |
| [20] | Li B Z, Liu R N, Liu J, et al. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7. New Crops, 2024, 1(1): 100012. |
| [21] | Song Q, Kong L F, Yang X R, et al. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiology, 2022, 42(10): 2133-2147. |
| [22] | Zhang J P, Wang G R, Bie H, et al. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling. Acta Agronomica Sinica, (2025-04-10)[2025-04-18]. http://kns.cnki.net/kcms/detail/11.1809.s.20250110.1231.002.html. |
| 张建鹏, 王国瑞, 别海, 等. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性. 作物学报, (2025-04-10)[2025-04-18]. http://kns.cnki.net/kcms/detail/11.1809.s.20250110.1231.002.html. | |
| [23] | Wang J J. Cloning of CiMYB4 Chrysanthemum indicum var. aromaticum and genetic transformation of Chrysanthemum indicum. Harbin: Northeast Forestry University, 2019. |
| 王霁佳. 神农香菊CiMYB4基因的克隆及对野菊的遗传转化. 哈尔滨: 东北林业大学, 2019. | |
| [24] | Xue Q. Functional analysis of CiMYB4 gene in response to cadmium stress and cloning, expression analyse of its promoter in Chrysanthemum indicum var. aromaticum. Harbin: Northeast Forestry University, 2022. |
| 薛晴. 神农香菊CiMYB4响应镉胁迫的功能研究及其启动子克隆与表达分析. 哈尔滨: 东北林业大学, 2022. | |
| [25] | Li M Y. Verification of drought tolerance function of CiMYB4 gene of Chrysanthemum indicum var. aromaticum and construction of RNAi vector. Harbin: Northeast Forestry University, 2020. |
| 李梦雨. 神农香菊CiMYB4基因抗旱性功能验证及RNAi载体构建. 哈尔滨: 东北林业大学, 2020. | |
| [26] | Zhou L, Shi K, Cui X R, et al. Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco. Environmental and Experimental Botany, 2023, 205(1): 105143. |
| [27] | Li H S. Principles and techniques of plant physiological biochemical experiment. Bejing: Higher Education Press, 2000. |
| 李合生. 植物生理生化实验原理和技术. 北京: 中国高等教育出版社, 2000. | |
| [28] | Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10): 573-581. |
| [29] | Ren M H, Zhang Y P, Xu T, et al. Identification and expression analyses of R2R3-MYB subfamily in alfalfa under drought stress. Acta Agrestia Sinica, 2023, 31(4): 972-983. |
| 任明辉, 张雨蓬, 许涛, 等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析. 草地学报, 2023, 31(4): 972-983. | |
| [30] | Jiang Y J, Yu Y P, Sun X Y, et al. Identification of R2R3-MYB gene family and analysis of its expression pattern in centipedegrass under drought stress. Acta Agrestia Sinica, 2023, 31(9): 2628-2641. |
| 蒋宇佳, 于元平, 孙向一, 等. 假俭草R2R3-MYB基因家族的鉴定及其在干旱胁迫下的表达模式分析. 草地学报, 2023, 31(9): 2628-2641. | |
| [31] | Chen G Q, He W Z, Guo X X, et al. Genome-wide identification, classification and expression analysis of the MYB transcription factor family in Petunia. International Journal of Molecular Sciences, 2021, 22(9): 4838. |
| [32] | Zhang T T, Cui Z, Li Y X, et al. Genome-wide identification and expression analysis of MYB transcription factor superfamily in Dendrobium catenatum. Frontiers in Genetics, 2021, 12(1): 714696. |
| [33] | Wei Q H, Chen R, Wei X, et al. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21(1): 792. |
| [34] | Yang J H, Zhang B H, Gu G, et al. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genomics, 2022, 23(1): 432. |
| [35] | Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011, 66(1): 94-116. |
| [36] | Du H, Yang S S, Liang Z, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 2012, 12(1): 106. |
| [37] | Chen Y H, Yang X Y, He K, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006, 60(1): 107-124. |
| [38] | Ding Q Q, Wang X T, Hu L Q, et al. MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress. Hereditas, 2018, 40(4): 327-338. |
| 丁庆倩, 王小婷, 胡利琴, 等. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性. 遗传, 2018, 40(4): 327-338. | |
| [39] | Yang S, Cai W W, Shen L, et al. A CaCDPK29-CaWRKY27b module promotes CaWRKY40 mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. New Phytologist, 2022, 233(4): 1843-1863. |
| [40] | Liu W, Stewart J. Plant synthetic promoters and transcription factors. Current Opinion in Biotechnology, 2016, 37(1): 36-44. |
| [41] | Chen B, Xue Q, Li Z W, et al. Effects of light intensities on physiological characteristics and ultrastructure of four Commelinaceae plants. Acta Agrestia Sinica, 2021, 29(2): 281-292. |
| 陈斌, 薛晴, 李子葳, 等. 光强对4种鸭跖草科植物叶片生理特性和超微结构的影响. 草地学报, 2021, 29(2): 281-292. | |
| [42] | Yang C W, An M Z, Ren W, et al. Contrasting cold tolerance and underlying physiological mechanisms in two rye varieties during seed germination and seedling stages. Chinese Journal of Grassland, 2024, 46(6): 1-9. |
| 杨朝伟, 安明珠, 任伟, 等. 两个黑麦品种种子萌发期和幼苗期耐寒性差异及其生理机制. 中国草地学报, 2024, 46(6): 1-9. | |
| [43] | Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 2009, 29(1): 185-212. |
| [44] | Bai A X, Lu X Y. Effects of calcium and calcium effectors on antioxidant system and osmotic adjustment substances content of sour jujube (Ziziphus jujuba var. spinosa) seedlings under NaCl stress. Plant Physiology Journal, 2020, 56(9): 1910-1920. |
| 白爱兴, 鲁晓燕. 钙和钙效应剂对NaCl胁迫下酸枣幼苗抗氧化系统及渗透调节物质含量的影响. 植物生理学报, 2020, 56(9): 1910-1920. |
| [1] | Xue-qian JIANG, Qing-chuan YANG, Jun-mei KANG. Research progress on yield loss under drought stress and drought resistance genetics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2025, 34(7): 219-234. |
| [2] | Yuan-yuan ZHAO, Xiao-jian PU, Cheng-ti XU, Wei WANG, Yun-jie FU. Cloning of the MtBMI1 gene from Medicago truncatula and its role in drought tolerance [J]. Acta Prataculturae Sinica, 2025, 34(6): 139-153. |
| [3] | Cai-jin CHEN, Ming-fang BAO, Wen-hu WANG, Ji-hong SHANG, Yan-xia ZENG, Xiao-di SHA, Xin-zhong ZHU, Xue-min WANG, Wen-hui LIU. Current situation and prospects for drought-resistance breeding in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(3): 204-223. |
| [4] | Xin-yao WANG, Ya-ping PENG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Gene cloning and drought resistance identification of the gene HgS5 in Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2025, 34(2): 184-195. |
| [5] | Long-yi HE, Meng-meng TAN, Hai-tao CHE, Hong-ying ZHANG, Yu-xin ZHU, Yan-ni ZHANG. Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum [J]. Acta Prataculturae Sinica, 2025, 34(1): 161-173. |
| [6] | Chen-min HUO, Min YUAN, Bao-wen ZHANG, Rui-ju WANG. Genome-wide identification and bioinformatics analysis of CBF/DREB1 transcription factors in wild rice [J]. Acta Prataculturae Sinica, 2024, 33(6): 126-144. |
| [7] | Qiang LI, Fan KANG, Qing XUE, Bin CHEN, Ying SUN. Functional analysis of the R2R3-MYB transcription factor CiMYB4 of Chrysanthemum indicum var. aromaticum in response to cadmium stress [J]. Acta Prataculturae Sinica, 2024, 33(5): 128-142. |
| [8] | Jin-xiu HAN, Bin CHEN, Yan-ting LIU, Ru MENG, Li-yan JIN, Miao HE. Identification of CibHLH1 and its effect on photosynthetic characteristics in Chrysanthemum indicum var. aromaticum [J]. Acta Prataculturae Sinica, 2024, 33(1): 89-101. |
| [9] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| [10] | Wen-juan WANG, Shang-li SHI, Long HE, Bei WU, Chan-chan LIU. Accumulation and functions of polyamines in plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 186-202. |
| [11] | Zhi-peng CHANG, Ying-ying SUN, Jia-yang LI, Chun-mei GONG. Cloning and transformation of the CkCAD gene in Caragana korshinskii and analysis of its drought resistance function [J]. Acta Prataculturae Sinica, 2021, 30(3): 68-80. |
| [12] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
| [13] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
| [14] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
| [15] | ZHANG Xue-ting, WANG Xin-yong, YANG Wen-xiong, LIU Na, YANG Chang-gang. Evaluation of water-saving and drought-resistant maize varieties in the Hexi oasis irrigation corridor [J]. Acta Prataculturae Sinica, 2020, 29(2): 134-148. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||