Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (6): 304-312.DOI: 10.11686/cyxb20140636
• Orginal Article • Previous Articles Next Articles
KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan
Received:
2013-12-02
Online:
2014-12-20
Published:
2014-12-20
CLC Number:
KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa[J]. Acta Prataculturae Sinica, 2014, 23(6): 304-312.
Reference:[1]Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214.[2]Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291.[3]Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96.[4]Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332.[5]Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331.[6]Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172.[7]Jiang J, Yang B L, Xia T et al. Analysis of genetic diversity of salt tolerant alfalfa germplasms[J]. Acta Prataculturae Sinica, 2011, 20(5): 119-125.[8]Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137.[9]Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71.[10]Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317.[11]Liu S N, Yu L Q, Zhou Y L et al. The construction of genetic linkage frame map in tetraploid Medicago using RAPD markers[J]. Acta Prataculturae Sinica, 2012, 21(1): 170-175.[12]Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657.[13]Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794.[14]Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200.[15]Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992.[16]Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115.[17]Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19.[18]Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350.[19]Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501.[20]Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419.[21]Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163.[22]Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14.[23]Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35.[24]Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378.[25]Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415.[26]Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10.[27]Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679.[28]Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913.[29]Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112.[30]Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19.[31]Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18.[32]Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396.[33]Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104.[34]Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786.[35]Jiang G G, Song L L, Guo D L et al. Genome-wide association mapping of aluminum tolerance in Medicago truncatula[J]. Acta Prataculturae Sinica, 2013, 22(4): 170-178.[36]Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436.[37]Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162.[38]Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268.[39]Li X, Acharya A, Farmer A D, et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568.[40]Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435.[41]Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019.[42]Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966.[43]Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169.[44]Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12.[45]Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768.[46]Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.[47]Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620.[48]Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406.[49]Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502.[50]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.[51]Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246.[52]Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12.[53]Li X H,Brummer E C. Applied genetics and genomics in alfalfa breeding[J]. Agronomy, 2012, 2: 40-61.[54]Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68.[55]Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723.[56]Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748.[57]Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590.[58]Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876.[59]Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330.[60]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177.[61]Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123.[62]Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35.[63]Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690.[64]Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967.[65]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12.[66]Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10.参考文献:[1]Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214.[2]Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291.[3]Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96.[4]Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332.[5]Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331.[6]Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172.[7]姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125.[8]Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137.[9]Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71.[10]Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317.[11]刘曙娜, 于林清, 周延林, 等. 利用RAPD技术构建四倍体苜蓿遗传连锁图谱[J]. 草业学报, 2012, 21(1): 170-175.[12]Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657.[13]Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794.[14]Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200.[15]Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992.[16]Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115.[17]Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19.[18]Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350.[19]Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501.[20]Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419.[21]Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163.[22]Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14.[23]Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35.[24]Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378.[25]Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415.[26]Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10.[27]Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679.[28]Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913.[29]Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112.[30]Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19.[31]Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18.[32]Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396.[33]Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104.[34]Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786.[35]姜格格, 宋丽莉, 郭东林, 等. 蒺藜苜蓿耐酸铝性状的全基因组关联分析[J]. 草业学报, 2013, 22(4): 170-178.[36]Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436.[37]Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162.[38]Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268.[39]Li X, Acharya A, Farmer A D,et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568.[40]Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435.[41]Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019.[42]Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966.[43]Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169.[44]Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12.[45]Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768.[46]Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.[47]Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620.[48]Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406.[49]Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502.[50]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.[51]Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246.[52]Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12.[53]Li X H,Brummer E C. Applied Genetics and Genomics in Alfalfa Breeding[J]. Agronomy, 2012, 2: 40-61.[54]Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68.[55]Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723.[56]Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748.[57]Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590.[58]Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876.[59]Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330.[60]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177.[61]Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123.[62]Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35.[63]Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690.[64]Huang X, Wei X, Sang T,et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967.[65]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12.[66]Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10. |
[1] | ZHANG Qian-bing,Anwar Ahmat,YU Lei,LU Wei-hua,CHANG Qing. Effects of different irrigation methods and quantities on soil salt transfer in oasis alfalfa fields [J]. Acta Prataculturae Sinica, 2014, 23(6): 69-77. |
[2] | WANG Shao-fei,LUO Yong-cong,ZHANG Xin-quan,HUANG Lin-kai,MA Xiao,LIU Lian. The production performance of 14 annual ryegrass varieties in the southwest of Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(6): 87-94. |
[3] | WANG Yong,YUAN Xian-jun,GUO Gang,WEN Ai-you,WANG Jian,XIAO Shen-hua,YU Cheng-qun,BA Sang,SHAO Tao. Fermentation and aerobic stability of mixed ration forages in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 95-102. |
[4] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
[5] | QIN Fang-cuo,ZHAO Gui-qin,JIAO Ting,HAN Yong-jie,HOU Jian-jie,SONG Xu-dong. Effects of different moisture contents and additives on the quality of baled oat silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 119-125. |
[6] | QIU Xiao-yan,YUAN Xian-jun,GUO Gang,WEN Ai-you,YU Cheng-qun,BA Sang,SHAO Tao. Effects of molasses and acetic acid on fermentation and aerobic stability of total mixed ration silage in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 111-118. |
[7] | SHI Chuan-qi,LIU Mei,WANG Chen,ZHANG Xin-xin,CHENG Xin-yu. Taxonomic values for leaf structure in the tribe Vicieae (Leguminosae) in northeastern China [J]. Acta Prataculturae Sinica, 2014, 23(6): 157-166. |
[8] | HAN Bao-he,ZHU Hong. Effects of cadmium stress on accumulation ability, microstructure and physiological property in leaves of Trifolium repens [J]. Acta Prataculturae Sinica, 2014, 23(6): 167-175. |
[9] | LIU Hui-jie,LI Sheng,MA Shao-ying,ZHANG Pin-nan,SHI Zhen-zhen,YANG Xiao-ming. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2 stress [J]. Acta Prataculturae Sinica, 2014, 23(6): 189-197. |
[10] | ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun. Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2014, 23(6): 233-241. |
[11] | LI Jun-lin,ZHANG Xin-quan,YU Zhu,GUO Xu-sheng,MENG Xiang-kun,LUO Yan,YAN Yan-hong. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
[12] | QI Jing-hua,ZHANG Feng,WANG Ying,SUN Guo-jun. Nitrogen dynamics under plastic mulching on the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 13-23. |
[13] | TIAN Chen-xia,ZHANG Yong-mei,WANG Kai,ZHANG Wan. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3 [J]. Acta Prataculturae Sinica, 2014, 23(5): 133-142. |
[14] | SUN Hong,YU Ying-wen,MA Xiang-li,MU Xiao-ming,LIAO Jia-fa. A comprehensive evaluation of nutritional value of nine shrubs in the karst area of northwest Guizhou [J]. Acta Prataculturae Sinica, 2014, 23(5): 99-106. |
[15] | PAN Ming-hong,LING Yao,JING Wen,MA Hong-ping,PENG Yan. Genetic diversity and phylogeny of rhizobia isolated from white clover in Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(5): 143-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||