Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (1): 199-204.DOI: 10.11686/cyxb20140124
• Orignal Article • Previous Articles Next Articles
WU Qiang-sheng1,YUAN Fang-ying1,2,FEI Yong-jun1,LI Li1,HUANG Yong-ming1,LIU Chun-yan1
Received:
2013-03-29
Online:
2014-02-20
Published:
2014-02-20
CLC Number:
WU Qiang-sheng,YUAN Fang-ying,FEI Yong-jun,LI Li,HUANG Yong-ming,LIU Chun-yan. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica, 2014, 23(1): 199-204.
Reference:[1]Lynch J P. Root architecture and pant productivity[J]. Plant Physiology, 1995, 109: 7-13.[2]Forde B G, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232: 51-68.[3]Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell and Environment, 2005, 28: 67-77.[4]Osmont K S, Sibout R, Hardtke C S. Hidden branches: developments in root system architecture[J]. Annual Reviews of Plant Biology, 2007, 58: 93-113.[5]Wu Q S. Research and Application of Horticultural Plants Arbuscular mycorrhizal[M]. Bingjing: Science Press, 2010.[6]Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.[7]Schellenbaum L, Berta G, Ravolanirina F, et al. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species(Vitis vinifera L.)[J]. Annals of Botany, 1991, 68: 135-141. [8]Yao Q, Wang L R, Zhu H H, et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange(Poncirus trifoliata L. Raf.) seedlings[J]. Scientia Horticulturae, 2009, 121: 458-461.[9]Willaume M, Pages L. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings(Quercus pubescens)[J]. Annals Botany, 2011, 107: 653-662.[10]Bago B, Pfeffer P E, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas[J]. Plant Physiology, 2000, 124: 949-958.[11]Bago B, Pfeffer P E, Abubaker J, et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiology, 2003, 131: 1496-1507.[12]Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach (Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39: 232-236.[13]Li Z, Peng Y, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 257-263.[14]Zhang Y, Zhu Y, Yao T, et al. Interactions of four PGPRs isolated from pasture rhizosphere[J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37.[15]Wang X K. Plant Physiology and Biochemistry Experimental Principles and Techniques (2nd Edition)[M]. Bingjing: Higher Education Press, 2006.[16]Wu Q S, Zou Y N, Zhan T T, et al. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38: 25-31.[17]Zhao J L, He X L. Effects of AM fungi on the growth and drought-resistance of Artemisia ordosica[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(5): 184-188.[18]Bi Y L, Ding B J, Quan W Z,et al. Influence of VA mycorrhize on nutrient and water absorption in white clover[J]. Acta Agrestia Sinica, 2001, 9(2): 154-158.[19]Simard S W, Beiler K J, Bingham M A, et al. Mycorrhizal networks: Mechanisms, ecology and modelling[J]. Fungal Biology Reviews, 2012, 26:39-60.[20]Wu Q S, He X H, Zou Y N, et al. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines[J]. Plant Growth Regulation, 2012, 68: 27-35.[21]Ji C L, Tian M M, Ma J F, et al. Advances in the researches on the effects of arbuscular mycorrhizal fungi on plant nutrition metabolism and growth effects[J]. Journal of Zhejiang Normal University(Natural Science), 2010, 33(3): 303-309.[22]Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control growth during early seedlings development in Arabidopsis[J]. Proceeding of the National Academy of Sciences, 2012, 109: 11217-11221.[23]Francis D. The cell cycle in plant development[J]. New Phytologist, 1992, 122: 1-20.参考文献:[1]Lynch J P. Root architecture and pant productivity[J]. Plant Physiology, 1995, 109: 7-13.[2]Forde B G, Lorenzo H. The nutritional control of root development[J]. Plant and Soil, 2001, 232: 51-68.[3]Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell and Environment, 2005, 28: 67-77.[4]Osmont K S, Sibout R, Hardtke C S. Hidden branches: developments in root system architecture[J]. Annual Reviews of Plant Biology, 2007, 58: 93-113.[5]吴强盛. 园艺植物丛枝菌根研究与应用[M]. 北京: 科学出版社,2010.[6]叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52.[7]Schellenbaum L, Berta G, Ravolanirina F,et al. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species(Vitis vinifera L.)[J]. Annals of Botany, 1991, 68: 135-141. [8]Yao Q, Wang L R, Zhu H H,et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings[J]. Scientia Horticulturae, 2009, 121: 458-461.[9]Willaume M, Pages L. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings(Quercus pubescens)[J]. Annals Botany, 2011, 107: 653-662.[10]Bago B, Pfeffer P E, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas[J]. Plant Physiology, 2000, 124: 949-958.[11]Bago B, Pfeffer P E, Abubaker J,et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid[J]. Plant Physiology, 2003, 131: 1496-1507.[12]Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach(Prunus persica) seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39: 232-236.[13]李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 22(2): 257-263.[14]张英, 朱颖, 姚拓, 等. 分离自牧草根际四株促生菌株(PGPR)互作效应研究[J]. 草业学报, 2013, 22(1): 29-37.[15]王学奎.植物生理生化实验原理和技术(第2版)[M]. 北京: 高等教育出版社, 2006.[16]Wu Q S, Zou Y N, Zhan T T,et al. Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedling[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38: 25-31.[17]赵金莉,贺学礼.AM真菌对油蒿生长和抗旱性的影响[J].华北农学报,2007, 22(5): 184-188.[18]毕银丽, 丁保建, 全文智, 等. VA菌根对白三叶吸收水分和养分的影响[J].草地学报, 2001, 9(2): 154-158.[19]Simard S W, Beiler K J, Bingham M A,et al. Mycorrhizal networks: Mechanisms, ecology and modelling[J]. Fungal Biology Reviews, 2012, 26:39-60.[20]Wu Q S, He X H, Zou Y N,et al. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines[J]. Plant Growth Regulation, 2012, 68: 27-35.[21]吉春龙,田萌萌,马继芳,等. 丛枝菌根真菌对植物营养代谢与生长影响的研究进展[J].浙江师范大学学报(自然科学版), 2010, 33(3): 303-309.[22]Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control growth during early seedlings development in Arabidopsis[J]. Proceeding of the National Academy of Sciences, 2012, 109: 11217-11221.[23]Francis D. The cell cycle in plant development[J]. New Phytologist, 1992, 122: 1-20. |
[1] | ZHANG Qian-bing,Anwar Ahmat,YU Lei,LU Wei-hua,CHANG Qing. Effects of different irrigation methods and quantities on soil salt transfer in oasis alfalfa fields [J]. Acta Prataculturae Sinica, 2014, 23(6): 69-77. |
[2] | WANG Shao-fei,LUO Yong-cong,ZHANG Xin-quan,HUANG Lin-kai,MA Xiao,LIU Lian. The production performance of 14 annual ryegrass varieties in the southwest of Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(6): 87-94. |
[3] | WANG Yong,YUAN Xian-jun,GUO Gang,WEN Ai-you,WANG Jian,XIAO Shen-hua,YU Cheng-qun,BA Sang,SHAO Tao. Fermentation and aerobic stability of mixed ration forages in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 95-102. |
[4] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
[5] | QIN Fang-cuo,ZHAO Gui-qin,JIAO Ting,HAN Yong-jie,HOU Jian-jie,SONG Xu-dong. Effects of different moisture contents and additives on the quality of baled oat silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 119-125. |
[6] | QIU Xiao-yan,YUAN Xian-jun,GUO Gang,WEN Ai-you,YU Cheng-qun,BA Sang,SHAO Tao. Effects of molasses and acetic acid on fermentation and aerobic stability of total mixed ration silage in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 111-118. |
[7] | SHI Chuan-qi,LIU Mei,WANG Chen,ZHANG Xin-xin,CHENG Xin-yu. Taxonomic values for leaf structure in the tribe Vicieae (Leguminosae) in northeastern China [J]. Acta Prataculturae Sinica, 2014, 23(6): 157-166. |
[8] | HAN Bao-he,ZHU Hong. Effects of cadmium stress on accumulation ability, microstructure and physiological property in leaves of Trifolium repens [J]. Acta Prataculturae Sinica, 2014, 23(6): 167-175. |
[9] | LIU Hui-jie,LI Sheng,MA Shao-ying,ZHANG Pin-nan,SHI Zhen-zhen,YANG Xiao-ming. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2 stress [J]. Acta Prataculturae Sinica, 2014, 23(6): 189-197. |
[10] | ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun. Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2014, 23(6): 233-241. |
[11] | KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa [J]. Acta Prataculturae Sinica, 2014, 23(6): 304-312. |
[12] | LI Jun-lin,ZHANG Xin-quan,YU Zhu,GUO Xu-sheng,MENG Xiang-kun,LUO Yan,YAN Yan-hong. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
[13] | QI Jing-hua,ZHANG Feng,WANG Ying,SUN Guo-jun. Nitrogen dynamics under plastic mulching on the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 13-23. |
[14] | TIAN Chen-xia,ZHANG Yong-mei,WANG Kai,ZHANG Wan. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3 [J]. Acta Prataculturae Sinica, 2014, 23(5): 133-142. |
[15] | SUN Hong,YU Ying-wen,MA Xiang-li,MU Xiao-ming,LIAO Jia-fa. A comprehensive evaluation of nutritional value of nine shrubs in the karst area of northwest Guizhou [J]. Acta Prataculturae Sinica, 2014, 23(5): 99-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||