[1] Alfieri J G, Xiao X M, Niyogi D, et al. Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA[J]. Global and Planetary Change, 2009, 67: 78-86. [2] Nachabe M, Shah N, Ross M, et al. Evapotranspiration of two vegetation covers in a shallow water table environment[J]. Soil Science Society of America Journal, 2005, 69(2): 492-499. [3] Zhang J H, Hu Y L, Xiao X M, et al. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J]. Agricultural and Forest Meteorology, 2009, 149: 976-984. [4] Verstraeten W W, Veroustraete F, Feyen J. Estimating evapotranspiration of European forest from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products[J]. Remote Sensing of Environment, 2005, 96(2): 256-276. [5] Venturim V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment, 2008, 112: 132-141. [6] Suleiman A, Crago R. Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures[J]. Agronomy Journal, 2004, 96: 384-390. [7] Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106: 285-304. [8] Holifield C D, McElroy S, Moran M S, et al. Temporal and spatial changes in grassland transpiration detected using Landsat TM and ETM+ imagery[J]. Canadian Journal of Remote Sensing, 2003, 29: 259-270. [9] Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation[J]. Journal of Geophysical Research, 2003, 108: 1-14. [10] Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences, 1996, 41(4): 495-516. [11] Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment, 2006, 103: 1-15. [12] Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida[J]. Remote Sensing of Environment, 2004, 93: 77-86. [13] da Silva V D R, de Azevedo P V, da Silva B B. Surface energy fluxes and evapotranspiration of a Mango Orchard grown in a semiarid environment[J]. Agronomy Journal, 2007, 99: 1391-1396. [14] Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces[J]. Journal of Hydrology, 1989, 111: 21-29. [15] Tolk J A, Howell T A, Evett S R. Nighttime evapotranspiration from Alfalfa and Cotton in a semiarid climate[J]. Agronomy Journal, 2006, 98: 730-736. [16] Lascano R J, van Bavel C H M. Explicit and recursive calculation of potential and actual evapotranspiration[J]. Agronomy Journal, 2007, 99: 585-590. [17] Nagler P L, Glenn E P, Kim H, et al. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices[J]. Journal of Arid Environment, 2007, 70(3): 443-462. [18] 徐玲玲, 张宪洲, 石培礼, 等. 青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定[J]. 中国科学, 2004, 34(增刊Ⅱ):125-130. [19] Justice C O, Vermote E, Townshend J R G, et al. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE Transactions on Geo-science and Remote Sensing, 1998, 36: 1228-1249. [20] Xiao X M, Braswell B, Zhang Q Y, et al. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia[J]. Remote Sensing of Environment, 2003, 84: 385-392. [21] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83: 195-213. [22] Xiao X M, Zhang Q Y, Hollinger D, et al. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data[J]. Ecological Applications, 2005, 15: 954-969. [23] Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94: 105-122. [24] Xiao X M, Hollinger D, Aber J D, et al. Satellite-based modeling of gross primary production in an evergreen needle leaf forest[J]. Remote Sensing of Environment, 2004, 89: 519-534. [25] Xiao X M, Zhang Q Y, Braswell B, et al. Modeling gross primary production of temperature deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91: 256-270. [26] 李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3): 366-371. [27] 张岁岐, 山仑. 植物水分利用效率及其研究进展[J]. 干旱地区农业研究, 2002, 20(4): 1-5. [28] 黄立华, 梁正伟, 马红媛. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响[J]. 草业学报, 2009, 18(5): 25-30. [29] 刘国利, 何树斌, 杨惠敏. 紫花苜蓿水分利用效率对水分胁迫的响应及其机理[J]. 草业学报, 2009, 18(3): 207-213. [30] 孙洪仁, 张英俊, 历卫宏, 等. 北京地区紫花苜蓿建植当年的耗水系数和水分利用效率[J]. 草业学报, 2007, 16(1): 41-46. [31] 郑有飞, 万长建, 颜景义, 等. 小麦的水分利用效率及其最优化问题[J]. 中国农业气象, 1997, 18(4): 13-17. [32] 杨秀芳, 玉柱, 徐妙云, 等. 2种不同类型的尖叶胡枝子光合-光响应特性研究[J]. 草业科学, 2009, 26(7): 61-65. [33] Hatfield J L, Sauer T J, Prueger J H. Managing soils to achieve greater water use efficiency: A Review[J]. Agronomy Journal, 2001, 93: 271-280. [34] 邵新庆, 沈禹颖, 王堃. 水土保持耕作对夏种大豆光合、蒸腾及水分利用效率的影响[J]. 草业学报, 2005, 14(6): 82-86. [35] Oweis T, Zhang H P, Pala M. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean Environment[J]. Agronomy Journal, 2000, 92: 231-238. [36] 渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J]. 植物学报, 2001, 43(2): 186-192. [37] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9: 121-137. [38] 王月福, 于振文, 潘庆民. 土壤水分胁迫对耐旱性不同的小麦品种水分利用效率的影响[J]. 山东农业科学, 1998, (3): 5-7. [39] 蒋高明, 何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境差异[J]. 植物学报, 1999, 41(10): 1114-1124. [40] Nobel P S. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants[J]. New Phytologist, 1991, 119: 183-205. [41] Allen L H, Pan D Y, Boote K J, et al. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean[J]. Agronomy Journal, 2003, 95: 1071-1081. |