Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (12): 73-85.DOI: 10.11686/cyxb2020040
Previous Articles Next Articles
Qian-qian MA1(), Tong LIU1(), He-gan DONG1,2, Han-yue WANG1, Wen-xuan ZHAO1, Rui-li WANG1, Yan LIU1, Le CHEN1
Received:
2020-02-05
Revised:
2020-03-30
Online:
2020-12-28
Published:
2020-12-28
Contact:
Tong LIU
Qian-qian MA, Tong LIU, He-gan DONG, Han-yue WANG, Wen-xuan ZHAO, Rui-li WANG, Yan LIU, Le CHEN. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change[J]. Acta Prataculturae Sinica, 2020, 29(12): 73-85.
模式名称 Model name | 单位名称及所属国家 Company name and country |
---|---|
ACCESS1-0 | CSIRO-BOM,澳大利亚 Australia |
BCC-CSM1-1 | BCC,中国 China |
CCSM4 | NCAR,美国 America |
CNRM-CM5 | CNRM,意大利 Italy |
GFDL-CM3 | NOAA GEDL,美国 America |
GISS-E2-R | NASA GISS,美国 America |
HadGEM2-AO | NIMA/KMA,韩国/英国 Korea/ United Kingdom |
HadGEM2-CC | MOHC,英国 United Kingdom |
HadGEM2-ES | MOHC,英国 United Kingdom |
INMCM4 | UNM,俄罗斯 Russia |
IPSL-CM5A-LR | IPSL,法国 France |
MIROC-ESM-CHEM | MIROC,日本 Japan |
MIROC-ESM | MIROC,日本 Japan |
MIROC5 | MIROC,日本 Japan |
MPI-ESM-LR | MPI-M,德国 Germany |
MRI-CGCM3 | MPI-M,德国 Germany |
NorESM1-M | NCC,挪威 Norway |
Table 1 Information about the 17 GCMs
模式名称 Model name | 单位名称及所属国家 Company name and country |
---|---|
ACCESS1-0 | CSIRO-BOM,澳大利亚 Australia |
BCC-CSM1-1 | BCC,中国 China |
CCSM4 | NCAR,美国 America |
CNRM-CM5 | CNRM,意大利 Italy |
GFDL-CM3 | NOAA GEDL,美国 America |
GISS-E2-R | NASA GISS,美国 America |
HadGEM2-AO | NIMA/KMA,韩国/英国 Korea/ United Kingdom |
HadGEM2-CC | MOHC,英国 United Kingdom |
HadGEM2-ES | MOHC,英国 United Kingdom |
INMCM4 | UNM,俄罗斯 Russia |
IPSL-CM5A-LR | IPSL,法国 France |
MIROC-ESM-CHEM | MIROC,日本 Japan |
MIROC-ESM | MIROC,日本 Japan |
MIROC5 | MIROC,日本 Japan |
MPI-ESM-LR | MPI-M,德国 Germany |
MRI-CGCM3 | MPI-M,德国 Germany |
NorESM1-M | NCC,挪威 Norway |
代号Code | 变量Variables | 贡献率Percentage contribution (%) |
---|---|---|
Bio14 (mm) | 最干月降水Precipitation of driest month | 36.2 |
Bio4 (×100) | 温度季节性变化标准差Temperature seasonality | 29.1 |
Bio1 (℃×10) | 年均温Annual mean temperature | 18.3 |
Bio8 (℃×10) | 最湿季均温Mean temperature of wettest quarter | 4.1 |
Bio12 (mm) | 年降水Annual precipitation | 3.5 |
Bio7 (℃×10) | 气温年范围Temperature annual range | 3.1 |
Bio3 | 等温性Isothermality | 1.4 |
Elevation (m) | 海拔Elevation | 1.1 |
Slope | 坡度Slope | 1.1 |
Soil | 土壤类型Soil | 0.9 |
Land | 土地利用类型Land | 0.8 |
Bio15 | 降水季节性变异系数Precipitation seasonality (coefficient of variation) | 0.4 |
Table 2 Percentage contribution of environmental variables to A. trifida distribution
代号Code | 变量Variables | 贡献率Percentage contribution (%) |
---|---|---|
Bio14 (mm) | 最干月降水Precipitation of driest month | 36.2 |
Bio4 (×100) | 温度季节性变化标准差Temperature seasonality | 29.1 |
Bio1 (℃×10) | 年均温Annual mean temperature | 18.3 |
Bio8 (℃×10) | 最湿季均温Mean temperature of wettest quarter | 4.1 |
Bio12 (mm) | 年降水Annual precipitation | 3.5 |
Bio7 (℃×10) | 气温年范围Temperature annual range | 3.1 |
Bio3 | 等温性Isothermality | 1.4 |
Elevation (m) | 海拔Elevation | 1.1 |
Slope | 坡度Slope | 1.1 |
Soil | 土壤类型Soil | 0.9 |
Land | 土地利用类型Land | 0.8 |
Bio15 | 降水季节性变异系数Precipitation seasonality (coefficient of variation) | 0.4 |
相对适应性等级 Suitability classes | 划分标准 Classification criteria |
---|---|
非适生区Unsuitable category | <0.1000 |
最不适区Most unsuitable | <0.0006 |
重度不适区Severe unsuitable | 0.0006~0.0046 |
中度不适区Moderate unsuitable | 0.0046~0.0131 |
轻度不适区Slightly unsuitable | 0.0131~0.1000 |
适生区Suitable category | >0.1000 |
轻度适生区Slightly suitable | 0.1000~0.1356 |
中度适生区Moderate suitable | 0.1356~0.1896 |
显著适生区Noteworthy suitable | 0.1896~0.2560 |
最适区域Most suitable | >0.2560 |
Table 3 Suitability grade classification
相对适应性等级 Suitability classes | 划分标准 Classification criteria |
---|---|
非适生区Unsuitable category | <0.1000 |
最不适区Most unsuitable | <0.0006 |
重度不适区Severe unsuitable | 0.0006~0.0046 |
中度不适区Moderate unsuitable | 0.0046~0.0131 |
轻度不适区Slightly unsuitable | 0.0131~0.1000 |
适生区Suitable category | >0.1000 |
轻度适生区Slightly suitable | 0.1000~0.1356 |
中度适生区Moderate suitable | 0.1356~0.1896 |
显著适生区Noteworthy suitable | 0.1896~0.2560 |
最适区域Most suitable | >0.2560 |
相对适应性类别 Suitability classes | 耕地 Farmland | 林地 Forestland | 草地 Grassland | 水域 Water area | 建设用地 Construction land | 未利用地 Unused land |
---|---|---|---|---|---|---|
最不适区Most unsuitable | 0.01 | 9.08 | 26.52 | 76.64 | 0.29 | 18.27 |
重度不适区Severe unsuitable | 5.06 | 22.19 | 18.45 | 4.36 | 8.73 | 24.50 |
中度不适区Moderate unsuitable | 16.27 | 25.66 | 15.81 | 4.65 | 14.40 | 26.24 |
轻度不适区Slightly unsuitable | 38.27 | 33.44 | 25.52 | 6.62 | 34.48 | 18.80 |
轻度适生区Slightly suitable | 11.30 | 3.26 | 4.01 | 0.93 | 12.57 | 2.69 |
中度适生区Moderate suitable | 10.58 | 2.06 | 3.65 | 1.57 | 11.83 | 2.92 |
显著适生区Noteworthy suitable | 5.98 | 1.88 | 3.00 | 3.23 | 6.46 | 3.52 |
最适区域Most suitable | 12.53 | 2.42 | 3.05 | 2.00 | 11.24 | 3.05 |
Table 4 Ratios of each suitable classes of A. trifida in different lands (%)
相对适应性类别 Suitability classes | 耕地 Farmland | 林地 Forestland | 草地 Grassland | 水域 Water area | 建设用地 Construction land | 未利用地 Unused land |
---|---|---|---|---|---|---|
最不适区Most unsuitable | 0.01 | 9.08 | 26.52 | 76.64 | 0.29 | 18.27 |
重度不适区Severe unsuitable | 5.06 | 22.19 | 18.45 | 4.36 | 8.73 | 24.50 |
中度不适区Moderate unsuitable | 16.27 | 25.66 | 15.81 | 4.65 | 14.40 | 26.24 |
轻度不适区Slightly unsuitable | 38.27 | 33.44 | 25.52 | 6.62 | 34.48 | 18.80 |
轻度适生区Slightly suitable | 11.30 | 3.26 | 4.01 | 0.93 | 12.57 | 2.69 |
中度适生区Moderate suitable | 10.58 | 2.06 | 3.65 | 1.57 | 11.83 | 2.92 |
显著适生区Noteworthy suitable | 5.98 | 1.88 | 3.00 | 3.23 | 6.46 | 3.52 |
最适区域Most suitable | 12.53 | 2.42 | 3.05 | 2.00 | 11.24 | 3.05 |
Fig.5 Voting consensus map for suitable habitats of A. trifida under the RCP4.5 and RCP8.5 scenarios by the mid- and late 21 st century, as based on simulations driven by 17 different GCMs climate data
气候情景Climate cenarios | 时期 Period | 三裂叶豚草适生区 A. trifida suitable habitat area (×104 km2) | ||
---|---|---|---|---|
增加Increased | 减少Decreased | 不变Unchanged | ||
RCP4.5 | 2050s | 14.06 | 0.71 | 23.30 |
2070s | 15.89 | 0.67 | 23.34 | |
RCP8.5 | 2050s | 16.34 | 0.90 | 23.11 |
2070s | 20.00 | 1.07 | 22.94 |
Table 5 Changes in potential habitat area for A. trifida under future climate scenarios in comparison with the current
气候情景Climate cenarios | 时期 Period | 三裂叶豚草适生区 A. trifida suitable habitat area (×104 km2) | ||
---|---|---|---|---|
增加Increased | 减少Decreased | 不变Unchanged | ||
RCP4.5 | 2050s | 14.06 | 0.71 | 23.30 |
2070s | 15.89 | 0.67 | 23.34 | |
RCP8.5 | 2050s | 16.34 | 0.90 | 23.11 |
2070s | 20.00 | 1.07 | 22.94 |
Fig.6 Suitable habitat areas of A. trifida in 2050s and 2070s under different future climate scenarios (RCP4.5 and RCP8.5) according to the results of simulations driven by 17 different GCM climate projections
1 | Montagnani C, Gentili R, Smith M, et al. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Critical Reviews in Plant Sciences, 2017, 36(3): 139-178. |
2 | Wan F H, Zheng X B, Guo J Y. Biology and control of important invasive species in agriculture and forestry. Beijing: Science Press, 2003: 662-688. |
万方浩, 郑小波, 郭建英. 重要农林外来入侵物种的生物学与控制. 北京: 科学出版社, 2003: 662-688. | |
3 | Bullock J M, Chapman D, Schafer S, et al. Assessing and controlling the spread and the effects of common ragweed in Europe. Final Report to the European Commission, DG Environment, 2012. |
4 | Qin Z, Ditommaso A, Wu R S, et al. Potential distribution of two Ambrosia species in China under projected climate change. Weed Research, 2014, 54(5): 520-531. |
5 | Dong H G, Zhou M D, Liu Z Q, et al. Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. Journal of Arid Land Resources and Environment, 2017, 31(11): 175-180. |
董合干, 周明冬, 刘忠权, 等. 豚草和三裂叶豚草在新疆伊犁河谷的入侵及扩散特征.干旱区资源与环境, 2017, 31(11): 175-180. | |
6 | Ward N L, Masters G J. Linking climate change and species invasion: An illustration using insect herbivores. Global Change Biology, 2007, 13(8): 1605-1615. |
7 | Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013: 95-123. |
8 | Shi Y F, Shen Y P, Hu R J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. |
施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号, 影响和前景初步探讨. 冰川冻土, 2002, 24(3): 219-226. | |
9 | Byers J E, Reichard S, Randall J M, et al. Directing research to reduce the impacts of nonindigenous species. Conservation Biology, 2002, 16(3): 630-640. |
10 | Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620. |
11 | Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190(3/4): 231-259. |
12 | Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alienspecies’ potential distribution models. Biodiversity Science, 2007, 15(4): 365-372. |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15(4): 365-372. | |
13 | Fang F, Zhang C X, Huang H J, et al. Potential distribution of Tausch’s goatgrass (Aegilops tauschii) in both China and the rest of the world as predicted by Maxent. Acta Prataculturae Sinica, 2013, 22(2): 65-73. |
房锋, 张朝贤, 黄红娟, 等. 基于MaxEnt的麦田恶性杂草节节麦的潜在分布区预测. 草业学报, 2013, 22(2): 65-73. | |
14 | Wang C, Lin H L, He L, et al. Research on responses of Eupatorium adenophorum’s potential distribution to climate change. Acta Prataculturae Sinica, 2014, 23(4): 20-30. |
王翀, 林慧龙, 何兰, 等. 紫茎泽兰潜在分布对气候变化响应的研究. 草业学报, 2014, 23(4): 20-30. | |
15 | Wu Z N, Hou X Y, Ren W B, et al. Prediction of the potential geographic distribution of Leymus chinensis based on MaxEnt and collection and protection of germplasm. Acta Prataculturae Sinica, 2018, 27(10): 127-137. |
武自念, 侯向阳, 任卫波, 等. 基于MaxEnt模型的羊草适生区预测及种质资源收集与保护. 草业学报, 2018, 27(10): 127-137. | |
16 | Cui S P, Luo X, Li C W, et al. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodiversity Science, 2018, 26(2): 171-176. |
崔绍朋, 罗晓, 李春旺, 等. 基于MaxEnt模型预测白唇鹿的潜在分布区. 生物多样性, 2018, 26(2): 171-176. | |
17 | Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498. |
18 | Alfonso C C, Naranjo L F, Clark T R, et al. Effects of environmental changes on the occurrence of Oreomunnea mexicana (Juglandaceae) in a biodiversity hotspot cloud forest. Forests, 2017, 8(8): 261. |
19 | Wei B, Wang R, Hou K, et al. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 2018, 16: e00477. |
20 | Qin A, Liu B, Guo Q, et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from Southwestern China. Global Ecology and Conservation, 2017, 10: 139-146. |
21 | Xu X, Zhang H, Xie T, et al. Effects of climate change on the potentially suitable climatic geographical range of Liriodendron chinense. Forests, 2017, 8(10): 399. |
22 | Lioubimtseva E, Cole R. Uncertainties of climate change in arid environments of Central Asia. Reviews in Fisheries Science, 2006, 14(1/2): 29-49. |
23 | Li J Y, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275: 243-254. |
24 | Phillips S J, Dudík M, Schapire R E. A maximum entropy approach to species distribution modeling. New York: Proceedings of the Twenty-first International Conference on Machine Learning, 2004: 655-662. |
25 | Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive Cardiovascular and Thoracic Surgery, 2004, 3(2): 319-322. |
26 | Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293. |
27 | Pearson R G, Raxworthy C J, Nakamura M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 2007, 34(1): 102-117. |
28 | Chen H, Chen L J, Albright T P. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China. Chinese Science Bulletin, 2007, 52(9): 1223-1230. |
29 | Liu Y, Dong H G, Liu T, et al. Relationship between seed germination and invasion of Ambrosia artemisiifolia and A. trifida at different positions. Acta Ecologica Sinica, 2019, 39(24): 9079-9088. |
刘延, 董合干, 刘彤, 等. 豚草和三裂叶豚草不同植株部位种子萌发与入侵扩散关系. 生态学报, 2019, 39(24): 9079-9088. | |
30 | Wang G J, Sun B, Li J D, et al. Physiological response of invasive ragweed (Ambrosia trifida) to different water conditions. Hubei Agricultural Sciences, 2014(5): 1054-1058. |
王国骄, 孙备, 李建东, 等. 外来入侵种三裂叶豚草对不同水分条件的生理响应. 湖北农业科学, 2014(5): 1054-1058. | |
31 | Wei S H, Qu Z, Zhang C X, et al. Invasive alien species giant ragweed (Ambrosia trifida L.) and its risk assessment. Plant Protection, 2006, 32(4): 14-19. |
魏守辉, 曲哲, 张朝贤, 等. 外来入侵物种三裂叶豚草(Ambrosia trifida L.)及其风险分析. 植物保护, 2006, 32(4): 14-19. | |
32 | Cao X F, Qian G L, Hu B S, et al. Prediction of potential suitable distribution area of Flaveria bidentis in China based on niche models. Chinese Journal of Applied Ecology, 2010, 21(12): 3063-3069. |
曹向锋, 钱国良, 胡白石, 等. 采用生态位模型预测黄顶菊在中国的潜在适生区. 应用生态学报, 2010, 21(12): 3063-3069. | |
33 | Essl F, Biró K, Brandes D, et al. Biological flora of the British Isles: Ambrosia artemisiifolia. Journal of Ecology, 2015, 103(4): 1069-1098. |
34 | Baskin J M, Baskin C C. Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology, 1980, 61(3): 475-480. |
35 | Bassett I J, Crompton C W. The Biology of Canadian weeds: 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Canadian Journal of Plant Science, 1975, 55(2): 463-476. |
36 | Insausti P, Soriano A, Sanchez R A. Effects of flood-influenced factors on seed germination of Ambrosia tenuifolia. Oecologia, 1995, 103(1): 127-132. |
37 | Davis W E. Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifid. American Journal of Botany, 1930, 17(1): 58-76. |
38 | Bazzaz F A. The physiological ecology of plant succession. Annual review of Ecology and Systematics, 1979, 10(1): 351-371. |
39 | Abul‐Fatih H A, Bazzaz F A. The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytologist, 1979, 83(3): 817-827. |
40 | Ballard T O, Foley M E, Bauman T T. Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed. Journal of Plant Physiology, 1996, 149(1/2): 229-232. |
41 | Bassett I J, Crompton C W. The biology of Canadian weeds: 55. Ambrosia trifida L. Canadian Journal of Plant Science, 1982, 62(4): 1003-1010. |
42 | Makra L, Matyasovszky I, Hufnagel L, et al. The history of ragweed in the world. Applied Ecology and Environmental Research, 2015, 13(2): 489-512. |
43 | Cunze S, Leiblein M C, Tackenberg O. Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecology, 2013, 61(1): 133-143. |
44 | Storkey J, Stratonovitch P, Chapman D S, et al. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One, 2014, 9(2): e88156. |
45 | Chapman D S, Haynes T, Beal S, et al. Phenology predicts the native and invasive range limits of common ragweed. Global Change Biology, 2014, 20(1): 192-202. |
[1] | Hui-long LIN, Di FAN, Qi-sheng FENG, Tian-gang LIANG. New focus for the study of the Comprehensive Sequential Classification System for grassland: A review from 2008 to 2020 and prospects for future research [J]. Acta Prataculturae Sinica, 2021, 30(10): 201-213. |
[2] | GUO Qiang, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of meteorological factors on the population of plateau zokor [J]. Acta Prataculturae Sinica, 2020, 29(8): 188-194. |
[3] | WU Hao, ZHANG Chen, DAI Wen-kui. Interactive effects of climate warming and species diversity on the invasiveness of the alien weed Alternanthera philoxeroides [J]. Acta Prataculturae Sinica, 2020, 29(3): 38-48. |
[4] | ZHANG Zhi-qi, ZHANG Li-xu, XU Wei, WANG Hao, WANG Jin-zhou, WANG Wei, HE Jin-sheng. Several important issues of soil respiration under climate warming [J]. Acta Prataculturae Sinica, 2019, 28(9): 164-173. |
[5] | WANG Duo-bin, JI Chang-ting, LIN Hui-long. A ‘denitrification-decomposition’ (DNDC) model evaluation of alpine meadow soil carbon response to climate change [J]. Acta Prataculturae Sinica, 2019, 28(12): 197-204. |
[6] | WANG Ying-xin, CHEN Xian-jiang, LOU Shan-ning, HU An, REN Jin-fei, HU Jun-qi, ZHANG Jing, HOU Fu-jiang. Woody-plant encroachment in grasslands: a review of mechanisms and aftereffects [J]. Acta Prataculturae Sinica, 2018, 27(5): 219-227. |
[7] | GUO Ding, GUO Wen-fei, ZHAO Jian, Temuqiletu, LI Xu-dong, FU Hua, LUO Yi-qi. Modeled effects of precipitation, temperature, and CO2 changes on carbon dynamics in grassland and cropland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(2): 1-14. |
[8] | GENG Yuan-bo, WANG Song, HU Xue-di. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model [J]. Acta Prataculturae Sinica, 2018, 27(1): 1-13. |
[9] | ZHANG Ying, ZHANG Chao-Bin, WANG Zhao-Qi, YANG Yue, ZHANG Yan-Zhen, LI Jian-Long, AN Ru. Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China [J]. Acta Prataculturae Sinica, 2017, 26(5): 1-14. |
[10] | ZHANG Ming-Li, CHANG Hong-Lei, MA Miao. Comparison of functional diversity of rhizosphere soil microorganisms between the exotic plant Xanthium italicum and its native partner Xanthium sibiricum by the Biolog method [J]. Acta Prataculturae Sinica, 2017, 26(10): 179-187. |
[11] | CHEN Yi-Zhao, LI Jian-Long, SUN Zheng-Guo, GANG Cheng-Cheng. Spatio-temporal dynamics of grassland net primary productivity and its response to climate change in the Temperate Eurasian Steppe 1982-2008 [J]. Acta Prataculturae Sinica, 2017, 26(1): 1-12. |
[12] | WANG Song, GENG Yuan-Bo, MU Yue. Responses of aboveground net primary productivity of the typical steppe to climate change-a simulation based on the CENTURY Model [J]. Acta Prataculturae Sinica, 2016, 25(12): 4-13. |
[13] | MA Xiao-Fang, CHEN Si-Yu, DENG Jie, FENG Qi-Sheng, HUANG Xiao-Dong. Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2016, 25(1): 13-21. |
[14] | LU Hui, CONG Jing, LIU Xiao, WANG Xiu-Lei, TANG Jun, LI Di-Qiang, ZHANG Yu-Guang. Plant diversity patterns along altitudinal gradients in alpine meadows in the Three River Headwater Region, China [J]. Acta Prataculturae Sinica, 2015, 24(7): 197-204. |
[15] | LI Dong, LUO Xu-Peng, CAO Guang-Min, WU Qin, ZHUO Ma-Cuo, LI Hui-Mei, YANG Yong-Mei, PANG Bing-Kun. Simulating of the response of soil heterotrophic respiration to climate change and nitrogen deposition in alpine meadows [J]. Acta Prataculturae Sinica, 2015, 24(7): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||