Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (7): 82-92.DOI: 10.11686/cyxb2021016
Previous Articles Next Articles
Guo-fang WU(), Xiao-xia YU, Zhuo YU(), Dong-sheng YANG, Qian-qian LU
Received:
2021-01-14
Revised:
2021-03-04
Online:
2021-07-20
Published:
2021-06-03
Contact:
Zhuo YU
Guo-fang WU, Xiao-xia YU, Zhuo YU, Dong-sheng YANG, Qian-qian LU. Screening and identification of target fragments with low cyanide traits of sorghum-sudangrass hybrid using BSA-SSR[J]. Acta Prataculturae Sinica, 2021, 30(7): 82-92.
引物名称Primers | 上游引物Forward primer (5′?3′) | 下游引物Reverse primer (5′?3′) |
---|---|---|
AH99 | CGCACCATTCCGTTCTTG | CCGACTGTGACGCACTTGAT |
B4195 | ACGACCACCGTCTCCAAC | CGCCTTCACCTGCTCATA |
S64 | YTTGCGACTAGCAAAGTGG | CGAACTCCTTGTACAGGATGG |
Xtxp7 | ACATCTACTACCCTCTCACC | ACACATCGAGACCAGTTG |
Xtxp21 | GAGCTGCCATAGATTTGGTCG | ACCTCGACCCACCTTTGTTG |
Xtxp31 | ACCCAAAGCCCAAATCAG | GGGGGAGAAACGGTGAG |
Xtxp67 | CCTGACGCTCGTGGCTACC | TCCACACAAGATTCAGGCTCC |
Xtxp183 | AAGTTGTAATGGGGCTATTG | TTAAGAGGTGGGATATTGGT |
Xtxp321 | TAACCCAAGCCTGAGCATAAGA | CCCATTCACATGAGACGAG |
Table 1 The nucleotide sequences of 9 pairs of SSR primers combinations
引物名称Primers | 上游引物Forward primer (5′?3′) | 下游引物Reverse primer (5′?3′) |
---|---|---|
AH99 | CGCACCATTCCGTTCTTG | CCGACTGTGACGCACTTGAT |
B4195 | ACGACCACCGTCTCCAAC | CGCCTTCACCTGCTCATA |
S64 | YTTGCGACTAGCAAAGTGG | CGAACTCCTTGTACAGGATGG |
Xtxp7 | ACATCTACTACCCTCTCACC | ACACATCGAGACCAGTTG |
Xtxp21 | GAGCTGCCATAGATTTGGTCG | ACCTCGACCCACCTTTGTTG |
Xtxp31 | ACCCAAAGCCCAAATCAG | GGGGGAGAAACGGTGAG |
Xtxp67 | CCTGACGCTCGTGGCTACC | TCCACACAAGATTCAGGCTCC |
Xtxp183 | AAGTTGTAATGGGGCTATTG | TTAAGAGGTGGGATATTGGT |
Xtxp321 | TAACCCAAGCCTGAGCATAAGA | CCCATTCACATGAGACGAG |
目的片段名称 Name of target fragment | 引物名 Primer | 片段大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 引物名 Primer | 片段大小 Size of fragment (bp) |
---|---|---|---|---|---|
TF1 | Xtxp7 | 300 | TF14 | Xtxp321 | 750 |
TF2 | Xtxp7 | 280 | TF15 | Xtxp321 | 600 |
TF3 | Xtxp7 | 240 | TF16 | Xtxp321 | 550 |
TF4 | Xtxp31 | 600 | TF17 | S64 | 750 |
TF5 | Xtxp31 | 350 | TF18 | S64 | 500 |
TF6 | B4195 | 500 | TF19 | S64 | 600 |
TF7 | B4195 | 300 | TF20 | S64 | 650 |
TF8 | B4195 | 100 | TF21 | S64 | 420 |
TF9 | Xtxp183 | 350 | TF22 | S64 | 400 |
TF10 | Xtxp183 | 300 | TF23 | S64 | 450 |
TF11 | Xtxp67 | 700 | TF24 | S64 | 350 |
TF12 | Xtxp67 | 500 | TF25 | AH99 | 150 |
TF13 | Xtxp67 | 300 | TF26 | Xtxp21 | 180 |
Table 2 Screening results of low cyanide target fragments in sorghum-sudangrass hybrid
目的片段名称 Name of target fragment | 引物名 Primer | 片段大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 引物名 Primer | 片段大小 Size of fragment (bp) |
---|---|---|---|---|---|
TF1 | Xtxp7 | 300 | TF14 | Xtxp321 | 750 |
TF2 | Xtxp7 | 280 | TF15 | Xtxp321 | 600 |
TF3 | Xtxp7 | 240 | TF16 | Xtxp321 | 550 |
TF4 | Xtxp31 | 600 | TF17 | S64 | 750 |
TF5 | Xtxp31 | 350 | TF18 | S64 | 500 |
TF6 | B4195 | 500 | TF19 | S64 | 600 |
TF7 | B4195 | 300 | TF20 | S64 | 650 |
TF8 | B4195 | 100 | TF21 | S64 | 420 |
TF9 | Xtxp183 | 350 | TF22 | S64 | 400 |
TF10 | Xtxp183 | 300 | TF23 | S64 | 450 |
TF11 | Xtxp67 | 700 | TF24 | S64 | 350 |
TF12 | Xtxp67 | 500 | TF25 | AH99 | 150 |
TF13 | Xtxp67 | 300 | TF26 | Xtxp21 | 180 |
目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) |
---|---|---|---|---|---|
TF1 | 282 | TF10 | 277 | TF19 | 585 |
TF2 | 271 | TF11 | 618 | TF20 | 589 |
TF3 | 235 | TF12 | 447 | TF21 | 363 |
TF4 | 451 | TF13 | 56 | TF22 | 344 |
TF5 | 353 | TF14 | 622 | TF23 | 504 |
TF6 | 476 | TF15 | 501 | TF24 | 297 |
TF7 | 241 | TF16 | 586 | TF25 | 136 |
TF8 | 101 | TF17 | 672 | TF26 | 403 |
TF9 | 314 | TF18 | 560 |
Table 3 DNA sequencing results of 26 low cyanide target fragments
目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) | 目的片段名称 Name of target fragment | 片段实际大小 Size of fragment (bp) |
---|---|---|---|---|---|
TF1 | 282 | TF10 | 277 | TF19 | 585 |
TF2 | 271 | TF11 | 618 | TF20 | 589 |
TF3 | 235 | TF12 | 447 | TF21 | 363 |
TF4 | 451 | TF13 | 56 | TF22 | 344 |
TF5 | 353 | TF14 | 622 | TF23 | 504 |
TF6 | 476 | TF15 | 501 | TF24 | 297 |
TF7 | 241 | TF16 | 586 | TF25 | 136 |
TF8 | 101 | TF17 | 672 | TF26 | 403 |
TF9 | 314 | TF18 | 560 |
目的片段Target fragment | 长度Length (bp) | 基因 Gene | 基因描述 Gene description | 同源性Identity (%) |
---|---|---|---|---|
TF4 | 451 | K0J259 | 过氧化物酶受体2 Peroxisome proliferator-activated receptor gamma 2 | 100.0 |
TF12 | 447 | A0A2K6B7D4 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 100.0 |
TF26 | 403 | A0A2K6RRD2 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 100.0 |
TF16 | 586 | AY661656.1 | 高粱克隆BAC 88M4基因Sorghum bicolor clone BAC 88M4 | 97.0 |
TF17 | 672 | F8QJV4 | 干腐菌未表征蛋白Uncharacterized protein (Serpula lacrymans var. lacry…) | 96.4 |
TF8 | 101 | XM_021458168.1 | 预测:高粱叶绿体磷酸核糖激酶Predicted: Sorghum bicolor phosphoribulokinase, chloroplastic | 95.4 |
TF18 | 560 | MT703519.1 | 未培养真菌克隆MEL2362236_RCJ505 Uncultured fungus clone MEL2362236_RCJ505 | 91.6 |
TF1 | 282 | XM_002758639.5 | 预测:过氧化物酶受体Predicted: peroxisome proliferator-activated receptor gamma | 88.4 |
TF5 | 353 | AF310249.1 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 88.2 |
TF21 | 363 | Q8ZQ76 | 鼠伤寒沙门氏菌氨基肽酶N Aminopeptidase N (Salmonella typhimurium stra) | 84.6 |
TF19 | 585 | KJ173700.1 | 黄孢原毛单胞菌18S RNA基因Cladosporium flabelliforme isolate 18S RNA gene | 83.2 |
TF20 | 589 | KJ173700.1 | 黄孢原毛单胞菌18S RNA基因Cladosporium flabelliforme isolate 18S RNA gene | 83.2 |
TF23 | 504 | A0A072PQP8 | 磷脂酰丝氨酸脱羧酶原酶2 Phosphatidylserine decarboxylase proenzyme 2 | 81.3 |
TF25 | 136 | A0A078FW90 | 甘蓝型油菜蛋白BnaA09g07050D protein (Brassica napus) | 81.0 |
TF2 | 271 | ? | ? | ? |
TF3 | 235 | ? | ? | ? |
TF6 | 476 | ? | ? | ? |
TF7 | 241 | ? | ? | ? |
TF9 | 314 | ? | ? | ? |
TF10 | 277 | ? | ? | ? |
TF11 | 618 | ? | ? | ? |
TF13 | 56 | ? | ? | ? |
TF14 | 622 | ? | ? | ? |
TF15 | 501 | ? | ? | ? |
TF22 | 344 | ? | ? | ? |
TF24 | 297 | ? | ? | ? |
Table 4 Identity of comparison of low cyanide target fragments in sorghum-sudangrass hybrid
目的片段Target fragment | 长度Length (bp) | 基因 Gene | 基因描述 Gene description | 同源性Identity (%) |
---|---|---|---|---|
TF4 | 451 | K0J259 | 过氧化物酶受体2 Peroxisome proliferator-activated receptor gamma 2 | 100.0 |
TF12 | 447 | A0A2K6B7D4 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 100.0 |
TF26 | 403 | A0A2K6RRD2 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 100.0 |
TF16 | 586 | AY661656.1 | 高粱克隆BAC 88M4基因Sorghum bicolor clone BAC 88M4 | 97.0 |
TF17 | 672 | F8QJV4 | 干腐菌未表征蛋白Uncharacterized protein (Serpula lacrymans var. lacry…) | 96.4 |
TF8 | 101 | XM_021458168.1 | 预测:高粱叶绿体磷酸核糖激酶Predicted: Sorghum bicolor phosphoribulokinase, chloroplastic | 95.4 |
TF18 | 560 | MT703519.1 | 未培养真菌克隆MEL2362236_RCJ505 Uncultured fungus clone MEL2362236_RCJ505 | 91.6 |
TF1 | 282 | XM_002758639.5 | 预测:过氧化物酶受体Predicted: peroxisome proliferator-activated receptor gamma | 88.4 |
TF5 | 353 | AF310249.1 | 过氧化物酶受体Peroxisome proliferator-activated receptor gamma | 88.2 |
TF21 | 363 | Q8ZQ76 | 鼠伤寒沙门氏菌氨基肽酶N Aminopeptidase N (Salmonella typhimurium stra) | 84.6 |
TF19 | 585 | KJ173700.1 | 黄孢原毛单胞菌18S RNA基因Cladosporium flabelliforme isolate 18S RNA gene | 83.2 |
TF20 | 589 | KJ173700.1 | 黄孢原毛单胞菌18S RNA基因Cladosporium flabelliforme isolate 18S RNA gene | 83.2 |
TF23 | 504 | A0A072PQP8 | 磷脂酰丝氨酸脱羧酶原酶2 Phosphatidylserine decarboxylase proenzyme 2 | 81.3 |
TF25 | 136 | A0A078FW90 | 甘蓝型油菜蛋白BnaA09g07050D protein (Brassica napus) | 81.0 |
TF2 | 271 | ? | ? | ? |
TF3 | 235 | ? | ? | ? |
TF6 | 476 | ? | ? | ? |
TF7 | 241 | ? | ? | ? |
TF9 | 314 | ? | ? | ? |
TF10 | 277 | ? | ? | ? |
TF11 | 618 | ? | ? | ? |
TF13 | 56 | ? | ? | ? |
TF14 | 622 | ? | ? | ? |
TF15 | 501 | ? | ? | ? |
TF22 | 344 | ? | ? | ? |
TF24 | 297 | ? | ? | ? |
低氰片段Low cyanide fragment | 登录号 Login ID | 基因名称 Gene name | 编码氨基酸 Encode amino acid | 高粱BTx623 Sorghum BTx623 | 红壳苏丹草 Red hull sudangrass | 低氰F2植株 Low cyanide of F2 plant |
---|---|---|---|---|---|---|
TF8 | lcl|Query_51852 | XM_021458168.1 | 3个替换3 replacements | 丙氨酸Alanine、甘氨酸Glycine | 半胱氨酸Cysteine | 半胱氨酸Cysteine |
苏氨酸Threonine | 丙氨酸Alanine | 丙氨酸Alanine | ||||
1个缺失1 missing | 甘氨酸Glycine | - | - | |||
TF16 | lcl|Query_10405 | AY661656.1 | 1个缺失1 missing | 丙氨酸Alanine | - | - |
Table 5 The difference amino acids of low cyanide fragments TF8 and TF16
低氰片段Low cyanide fragment | 登录号 Login ID | 基因名称 Gene name | 编码氨基酸 Encode amino acid | 高粱BTx623 Sorghum BTx623 | 红壳苏丹草 Red hull sudangrass | 低氰F2植株 Low cyanide of F2 plant |
---|---|---|---|---|---|---|
TF8 | lcl|Query_51852 | XM_021458168.1 | 3个替换3 replacements | 丙氨酸Alanine、甘氨酸Glycine | 半胱氨酸Cysteine | 半胱氨酸Cysteine |
苏氨酸Threonine | 丙氨酸Alanine | 丙氨酸Alanine | ||||
1个缺失1 missing | 甘氨酸Glycine | - | - | |||
TF16 | lcl|Query_10405 | AY661656.1 | 1个缺失1 missing | 丙氨酸Alanine | - | - |
1 | Zhan Q W, Qian Z Q. Heterosis utilization of hybrid between sorghum [Sorghum bicolor (L.) Moench] and sudangrass [Sorghum sudanense (Piper) StaTF]. Acta Agronomica Sinica, 2004, 30(1): 73-77. |
詹秋文, 钱章强. 高粱与苏丹草杂种优势利用的研究. 作物学报, 2004, 30(1): 73-77. | |
2 | Yu X X, Liu Z H, Yu Z, et al. Development of SSR markers linked to low hydrocyanic acid content in sorghum-sudan grass hybrid based on BSA method. Protein and Peptide Letters, 2016, 23(5): 417-423. |
3 | Hayes C M, Weers B D, Manish T, et al. Discovery of a dhurrin QTL in sorghum bicolor: Co-localization of dhurrin biosynthesis and a novel stay-green QTL. Crop Science, 2016, 56(1): 104-112. |
4 | Mullet J E, McCormick D, Morishige R, et al. Energy sorghum-A genetic model for the design of C4 grass bioenergy crops. JournaL of Experimental Botany, 2014, 65(13): 3479-3489. |
5 | Rooney W L. Sorghum improvement-integrating traditional and new technology to produce improved genotypes. Advances in Agronomy, 2004, 83: 37-109. |
6 | Rooney W L, Blumenthal J, Bean B, et al. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts & Biorefining, 2010, 1(2): 147-157. |
7 | Wu G F, Yu Z, Lu Q Q, et al. QTL mapping of hydrocyanic acid contention in sorghum-sudangrass. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2170-2178. |
吴国芳, 于卓, 卢倩倩, 等. 高丹草氢氰酸含量性状的QTL定位分析. 西北植物学报, 2019, 39(12): 2170-2178. | |
8 | Fu L P, Liu L, Chen W, et al. The research progress of cyanogenic glucosides (CNglcs) in forage crops. Journal of Grassland and Forage Science, 2020, 41(2): 4-10. |
付丽平, 刘璐, 陈旺, 等. 牧草作物中氰化物的研究进展. 草学, 2020, 41(2): 4-10. | |
9 | Guleria G J, Kumar N. Production efficiency, forage yield, nutrient uptake and quality of sorghum sudan grass hybrid (Sorghum bicolor×Sorghum sudanense)+cowpea (Vigna unguiculata) intercropping system as influenced by sowing methods and varying seed rates of cowpea. Indian Journal of Agronomy, 2018, 63(2): 150-156. |
10 | Abou-Elwafa S F, Amin A E A Z, Shehzad T. Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicology and Environmental Safety, 2019, 173: 366-372. |
11 | Shi Y, Yu X X, Nan Z B, et al. Construction of genetic linkage map of sorghum-sudangrass based on SRAP and SSR molecular markers. Chinese Journal of Grassland, 2018, 40(5): 11-17. |
石悦, 于肖夏, 南志标, 等. 高丹草SRAP和SSR分子遗传连锁图谱的构建. 中国草地学报, 2018, 40(5): 11-17. | |
12 | Shi Y. Construction of high-density genetic linkage map and QTL identification for traits such as hydrocyanic acid content of sorghum-sudangrass. Hohhot: Inner Mongolia Agricultural University, 2018. |
石悦. 高丹草高密度遗传连锁图谱构建及氢氰酸含量等性状的QTL定位. 呼和浩特: 内蒙古农业大学, 2018. | |
13 | Belalia N, Lupini A, Djemel A, et al. Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genetic Resources and Crop Evolution, 2019, 66(1): 243-257. |
14 | Guo Y W, Wu Y Q, Anderson J A, et al. SSR marker development, linkage mapping, and QTL analysis for establishment rate in common Bermudagrass. The Plant Genome, 2017, 10(1): 1-11. |
15 | Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832. |
16 | Lv X L, Zheng K Z, Li Y, et al. Identification of major QTL for maize gray leaf spot resistance by BSA method. Journal of Maize Sciences, 2015, 23(5): 16-20. |
吕香玲, 郑克志, 李元, 等. 利用BSA法发掘玉米抗灰斑病主效QTL. 玉米科学, 2015, 23(5): 16-20. | |
17 | Rahman M S, Linsell K J, Taylor J D, et al. Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat. Theoretical and Applied Genetics, 2020, 133(2): 635-652. |
18 | Zuki Z M, Rafii M Y, Ramli A, et al. Segregation analysis for bacterial leaf blight disease resistance genes in rice ‘MR219’ using SSR marker. Chilean Journal of Agricultural Research, 2020, 80(2): 227-233. |
19 | Shan H L, Li W F, Huang Y K, et al. Screening of polymorphic SSR molecular markers between resistant and susceptible parents for localization of brown rust resistance gene. Sugar Tech, 2020, 22(1): 1-7. |
20 | Han L J, Chen J, Mace E S, et al. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theoretical and Applied Genetics, 2015, 128(9): 1813-1825. |
21 | Zhou Y X. Molecular marker-assisted selection and breeding of new strains of sorghum-sudangrass of super-low content of HCN. Hohhot: Inner Mongolia Agricultural University, 2010. |
周亚星. 超低氢氰酸高丹草新品系分子标记辅助选育研究. 呼和浩特: 内蒙古农业大学, 2010. | |
22 | Zhou Y X, Yu X X, Yu Z, et al. Cloning of ISSR characteristic fragments related to super low hydrocyanic acid content in sorghum-sudangrass and sequence analysis. Chinese Journal of Grassland, 2012, 34(6): 75-80. |
周亚星, 于肖夏, 于卓, 等. 高丹草超低氢氰酸含量ISSR特征片段的克隆及序列分析. 中国草地学报, 2012, 34(6): 75-80. | |
23 | Wang J F, Duan L Z, Luo Z Q. Determination of CN- content in hybrid Sudan grass. Acta Prataculturae Sinica, 2002, 11(1): 43-46. |
汪建飞, 段立珍, 罗自琴. 杂交苏丹草中CN-含量的测定. 草业学报, 2002, 11(1): 43-46. | |
24 | Li J W, Li N. Establishment of rapid silver-stained method of denaturing polyacrylamide gel of microsatellite markers. Chinese Potato Journal, 2015, 29(3): 136-140. |
李建武, 李宁. SSR标记变性聚丙烯酰胺凝胶快速银染方法的建立. 中国马铃薯, 2015, 29(3): 136-140. | |
25 | Wilson A T, Calvin M. The photosynthetic cycle. CO2 dependent transients. Journal of the American Chemical Society, 1995, 77(22): 5948-5957. |
26 | Collin V, Issakidis-Bourguet E, Marchand C, et al. The arabidopsis plastidial thioredoxins: New functions and new insights into specificity. Journal of Biological Chemistry, 2003, 278: 23747-23752. |
27 | Barajas-López J D D, Serrato A J, Cazalis R, et al. Circadian regulation of chloroplastic f and m thioredoxins through control of the cca1 transcription factor. Journal of Experimental Botany, 2011, 62(6): 2039-2051. |
28 | Ye Y, Fulcher Y G, Sliman D J, et al. The badc and bccp subunits of chloroplast acetyl-coa carboxylase sense the ph changes of the light-dark cycle. Journal of Biological Chemistry, 2020, 295(29): 9901-9916. |
29 | Liu G Y, Chen K C, Zheng G M, et al. Screening and identification of female-specific DNA fragments in Channa argus using SSR-BSA. Journal of Fisheries of China, 2011, 35(2): 170-175. |
刘改艳, 陈昆慈, 郑光明, 等. SSR-BSA技术对乌鳢性别差异标记的初步筛选. 水产学报, 2011, 35(2): 170-175. | |
30 | Zhang Y H, Zhang S B, Lin J, et al. Detection of high effect site for resistance to rice stripe virus by BSA. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 85-88. |
张云辉, 张所兵, 林静, 等. 利用BSA法检测水稻条纹叶枯病高效应抗性位点. 华北农学报, 2014, 29(2): 85-88. | |
31 | Liao Y, Sun B J, Sun G W, et al. The application and key problems of bulked segregant analysis on the research of molecular marker in crop. Molecular Plant Breeding, 2009, 7(1): 162-168. |
廖毅, 孙保娟, 孙光闻, 等. 集群分离分析法在作物分子标记研究中的应用及问题分析. 分子植物育种, 2009, 7(1): 162-168. | |
32 | Ercolini D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food. Journal Microbiol Methods, 2004, 56(3): 297-314. |
33 | Chen Z B, Xiang S N, Jiang Z X, et al. Analysis on causes of multi-bands in researching on microbe populations by PCR-DGGE. Microbiology China, 2010, 37(1): 147-154. |
陈章宝, 向少能, 江震献, 等. PCR-DGGE研究微生物种群中多条带产生原因分析. 微生物学通报, 2010, 37(1): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||