Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (2): 171-181.DOI: 10.11686/cyxb2020538
Cheng-fu ZHOU1,3,4(), Shui-ping WANG1,4(), Bai-zhong ZHANG2(), Xiu-min ZHANG3, Rong WANG3, Zhi-yuan MA3, Min WANG3
Received:
2020-12-08
Revised:
2021-03-15
Online:
2022-02-20
Published:
2021-12-22
Contact:
Bai-zhong ZHANG
Cheng-fu ZHOU, Shui-ping WANG, Bai-zhong ZHANG, Xiu-min ZHANG, Rong WANG, Zhi-yuan MA, Min WANG. Effects of hydrothermal treatment on in vitro fermentation, methanogenesis and microbiota of soybean straw[J]. Acta Prataculturae Sinica, 2022, 31(2): 171-181.
微生物种类 Microbial species | 引物序列 Primer sequence (5?-3 ?) | 大小 Size (bp) | 参考文献 References |
---|---|---|---|
原虫Protozoa | F: GCTTTCGWTGGTAGTGTATT | 223 | Sylvester等[ |
R: CTTGCCCTCYAATCGTWCT | |||
真菌Fungi | F: GAGGAAGTAAAAGTCGTAACAAGGTTTC | 121 | Denman等[ |
R: CAAATTCACAAAGGGTAGGATGATT | |||
细菌Bacteria | F: CGGCAACGAGCGCAACCC | 146 | Denman等[ |
R: CCATTGTAGCACGTGTGTAGCC | |||
产甲烷菌Methanogens | F: GGATTAGATACCCSGGTAGT | 192 | Hook等[ |
R: GTTGARTCCAATTAAACCGCA | |||
产琥珀酸丝状杆菌Fibrobacter succinogenes | F: GTTCGGAATTACTGGGCGTAAA | 121 | Denman等[ |
R: CGCCTGCCCCTGAACTATC | |||
白色瘤胃球菌Ruminococcus albus | F: CCCTAAAAGCAGTCTTAGTTCG | 176 | Koike等[ |
R: CCTCCTTGCGGTTAGAACA | |||
黄色瘤胃球菌Ruminococcus flavefaciens | F: GAACGGAGATAATTTGAGTTTACTTAGG | 132 | Denman等[ |
R: CGGTCTCTGTATGTTATGAGGTATTACC | |||
甲烷杆菌目Methanobacteriales | F: CGWAGGGAAGCTGTTAAGT | 343 | Yu等[ |
R: TACCGTCGTCCACTCCTT | |||
甲烷短杆菌Methanobrevibacter | F: CCTCCGCAATGTGAGAAATCGC | 230 | Huang等[ |
R: TCWCCAGCAATTCCCACAGTT | |||
甲烷微菌目Methanomicrobiales | F: ATCGRTACGGGTTGTGGG | 506 | Yu等[ |
R: CACCTAACGCRCATHGTTTAC |
Table 1 Microbial qPCR primer sequence
微生物种类 Microbial species | 引物序列 Primer sequence (5?-3 ?) | 大小 Size (bp) | 参考文献 References |
---|---|---|---|
原虫Protozoa | F: GCTTTCGWTGGTAGTGTATT | 223 | Sylvester等[ |
R: CTTGCCCTCYAATCGTWCT | |||
真菌Fungi | F: GAGGAAGTAAAAGTCGTAACAAGGTTTC | 121 | Denman等[ |
R: CAAATTCACAAAGGGTAGGATGATT | |||
细菌Bacteria | F: CGGCAACGAGCGCAACCC | 146 | Denman等[ |
R: CCATTGTAGCACGTGTGTAGCC | |||
产甲烷菌Methanogens | F: GGATTAGATACCCSGGTAGT | 192 | Hook等[ |
R: GTTGARTCCAATTAAACCGCA | |||
产琥珀酸丝状杆菌Fibrobacter succinogenes | F: GTTCGGAATTACTGGGCGTAAA | 121 | Denman等[ |
R: CGCCTGCCCCTGAACTATC | |||
白色瘤胃球菌Ruminococcus albus | F: CCCTAAAAGCAGTCTTAGTTCG | 176 | Koike等[ |
R: CCTCCTTGCGGTTAGAACA | |||
黄色瘤胃球菌Ruminococcus flavefaciens | F: GAACGGAGATAATTTGAGTTTACTTAGG | 132 | Denman等[ |
R: CGGTCTCTGTATGTTATGAGGTATTACC | |||
甲烷杆菌目Methanobacteriales | F: CGWAGGGAAGCTGTTAAGT | 343 | Yu等[ |
R: TACCGTCGTCCACTCCTT | |||
甲烷短杆菌Methanobrevibacter | F: CCTCCGCAATGTGAGAAATCGC | 230 | Huang等[ |
R: TCWCCAGCAATTCCCACAGTT | |||
甲烷微菌目Methanomicrobiales | F: ATCGRTACGGGTTGTGGG | 506 | Yu等[ |
R: CACCTAACGCRCATHGTTTAC |
项目Items | 对照Control | 水热处理Hydrothermal treatment | 标准误SEM | P值P-value |
---|---|---|---|---|
化学组成Chemical compositions | ||||
中性洗涤可溶物Neutral detergent soluble (NDS) | 251 | 418 | 42.0 | <0.001 |
中性洗涤纤维Neutral detergent fiber (NDF) | 749 | 582 | 42.0 | <0.001 |
酸性洗涤纤维Acid detergent fiber (ADF) | 627 | 563 | 14.3 | <0.001 |
水溶性碳水化合物Water soluble carbohydrates (WSC) | 13.4 | 44.7 | 5.6 | <0.001 |
半纤维素Hemicellulose (HC) | 122.0 | 15.0 | 28.7 | <0.001 |
木质素Acid detergent lignin (ADL) | 143 | 179 | 13.1 | 0.346 |
粗蛋白质Crude protein (CP) | 56.8 | 57.7 | 2.4 | 0.453 |
单糖Monosaccharides | ||||
阿拉伯糖Arabinose | 85.5 | 128.0 | 9.6 | <0.001 |
半乳糖Galactose | 353 | 513 | 35.8 | <0.001 |
葡萄糖Glucose | 1994 | 426 | 350.3 | <0.001 |
鼠李糖Rhamnose | 71.4 | 49.4 | 4.9 | <0.001 |
木糖Xylose | 231 | 633 | 89.9 | <0.001 |
果糖Fructose | 289.0 | 55.5 | 52.1 | <0.001 |
Table 2 The concentrations of chemical compositions and monosaccharides for the fermentation substrates (g·kg-1, dry matter basis)
项目Items | 对照Control | 水热处理Hydrothermal treatment | 标准误SEM | P值P-value |
---|---|---|---|---|
化学组成Chemical compositions | ||||
中性洗涤可溶物Neutral detergent soluble (NDS) | 251 | 418 | 42.0 | <0.001 |
中性洗涤纤维Neutral detergent fiber (NDF) | 749 | 582 | 42.0 | <0.001 |
酸性洗涤纤维Acid detergent fiber (ADF) | 627 | 563 | 14.3 | <0.001 |
水溶性碳水化合物Water soluble carbohydrates (WSC) | 13.4 | 44.7 | 5.6 | <0.001 |
半纤维素Hemicellulose (HC) | 122.0 | 15.0 | 28.7 | <0.001 |
木质素Acid detergent lignin (ADL) | 143 | 179 | 13.1 | 0.346 |
粗蛋白质Crude protein (CP) | 56.8 | 57.7 | 2.4 | 0.453 |
单糖Monosaccharides | ||||
阿拉伯糖Arabinose | 85.5 | 128.0 | 9.6 | <0.001 |
半乳糖Galactose | 353 | 513 | 35.8 | <0.001 |
葡萄糖Glucose | 1994 | 426 | 350.3 | <0.001 |
鼠李糖Rhamnose | 71.4 | 49.4 | 4.9 | <0.001 |
木糖Xylose | 231 | 633 | 89.9 | <0.001 |
果糖Fructose | 289.0 | 55.5 | 52.1 | <0.001 |
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误 SEM | P值 P-value |
---|---|---|---|---|
干物质降解率Dry matter degradation (DMD,g·kg-1) | 553 | 616 | 6.700 | <0.001 |
产气量Gas volume (VDM,mL·g-1) | 199 | 184 | 1.300 | <0.001 |
可消化干物质产气量Gas volume per g of digestible dry matter (VDDM,mL·g-1) | 361 | 299 | 3.700 | <0.001 |
潜在最大产气量Final asymptotic gas volume (VF,mL·g-1) | 194 | 184 | 2.500 | 0.054 |
总产气速率Fractional rate of gas production (kGP,h-1) | 0.07 | 0.07 | 0.002 | 0.329 |
起始底物降解速率Initial fractional rate of degradation (FRD0,mmol·g-1·h-1) | 0.03 | 0.02 | 0.001 | 0.042 |
Table 3 Effects of HT on thesubstrate degradation and the parameters of gas production of soybean straw after 72 h in vitro ruminal incubation
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误 SEM | P值 P-value |
---|---|---|---|---|
干物质降解率Dry matter degradation (DMD,g·kg-1) | 553 | 616 | 6.700 | <0.001 |
产气量Gas volume (VDM,mL·g-1) | 199 | 184 | 1.300 | <0.001 |
可消化干物质产气量Gas volume per g of digestible dry matter (VDDM,mL·g-1) | 361 | 299 | 3.700 | <0.001 |
潜在最大产气量Final asymptotic gas volume (VF,mL·g-1) | 194 | 184 | 2.500 | 0.054 |
总产气速率Fractional rate of gas production (kGP,h-1) | 0.07 | 0.07 | 0.002 | 0.329 |
起始底物降解速率Initial fractional rate of degradation (FRD0,mmol·g-1·h-1) | 0.03 | 0.02 | 0.001 | 0.042 |
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误SEM | P值 P-value | |
---|---|---|---|---|---|
甲烷 Methane | 甲烷产量Methane volume (VM·DM,mL·g-1) | 23.2 | 19.8 | 0.230 | <0.001 |
可消化干物质甲烷产量Methane volume per g of digestible dry matter (VM·DDM,mL·g-1) | 42.0 | 32.1 | 0.520 | <0.001 | |
甲烷浓度Methane concentration (CM,%) | 13.0 | 10.9 | 0.140 | <0.001 | |
甲烷潜在最大产量Final asymptotic methane volume (VMF,mL·g-1) | 21.8 | 20.1 | 0.230 | 0.006 | |
甲烷产气速率Fractional rate of methane production (kM,h-1) | 0.01 | 0.06 | 0.002 | <0.001 | |
氢气 Hydrogen | 干物质氢气产量Hydrogen volume (VH·DM,mL·g-1) | 0.05 | 0.02 | 0.001 | <0.001 |
可消化干物质氢气产量Hydrogen volume per g of digestible dry matter (VH·DDM,mL·g-1) | 0.09 | 0.03 | 0.002 | <0.001 | |
氢气浓度Hydrogen concentration (CH,%) | 0.02 | 0.01 | 0.001 | <0.001 | |
氢气潜在最大产量Final asymptotic hydrogen volume (VHF,mL·g-1) | 0.06 | 0.03 | 0.003 | 0.001 | |
氢气产气速率Fractional rate of hydrogen production (kH,h-1) | 0.13 | 0.16 | 0.097 | 0.807 |
Table 4 Effects of HT on the parameters of methane and hydrogen gas production of soybean straw after 72 h in vitro ruminal incubation
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误SEM | P值 P-value | |
---|---|---|---|---|---|
甲烷 Methane | 甲烷产量Methane volume (VM·DM,mL·g-1) | 23.2 | 19.8 | 0.230 | <0.001 |
可消化干物质甲烷产量Methane volume per g of digestible dry matter (VM·DDM,mL·g-1) | 42.0 | 32.1 | 0.520 | <0.001 | |
甲烷浓度Methane concentration (CM,%) | 13.0 | 10.9 | 0.140 | <0.001 | |
甲烷潜在最大产量Final asymptotic methane volume (VMF,mL·g-1) | 21.8 | 20.1 | 0.230 | 0.006 | |
甲烷产气速率Fractional rate of methane production (kM,h-1) | 0.01 | 0.06 | 0.002 | <0.001 | |
氢气 Hydrogen | 干物质氢气产量Hydrogen volume (VH·DM,mL·g-1) | 0.05 | 0.02 | 0.001 | <0.001 |
可消化干物质氢气产量Hydrogen volume per g of digestible dry matter (VH·DDM,mL·g-1) | 0.09 | 0.03 | 0.002 | <0.001 | |
氢气浓度Hydrogen concentration (CH,%) | 0.02 | 0.01 | 0.001 | <0.001 | |
氢气潜在最大产量Final asymptotic hydrogen volume (VHF,mL·g-1) | 0.06 | 0.03 | 0.003 | 0.001 | |
氢气产气速率Fractional rate of hydrogen production (kH,h-1) | 0.13 | 0.16 | 0.097 | 0.807 |
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误 SEM | P值 P-value |
---|---|---|---|---|
pH | 6.47 | 6.44 | 0.012 | 0.132 |
氨态氮NH3-N (mmol·L-1) | 13.6 | 11.2 | 0.580 | 0.012 |
总挥发性脂肪酸Total volatile fatty acids (TVFA,mmol·L-1) | 77.9 | 82.8 | 3.240 | 0.043 |
乙酸/丙酸Acetate/propionate | 3.83 | 2.06 | 0.021 | <0.001 |
VFA产氢量Net hydrogen produced per VFA (RNH2,mol·100 mol-1) | 136 | 105 | 0.400 | <0.001 |
挥发性脂肪酸 Volatile fatty acid (VFA,mol·100 mol-1) | ||||
乙酸Acetate | 72.9 | 61.3 | 0.110 | <0.001 |
丙酸Propionate | 19.1 | 29.8 | 0.150 | <0.001 |
丁酸Butyrate | 5.12 | 6.03 | 0.021 | <0.001 |
异丁酸Iso-butyrate | 0.86 | 0.87 | 0.009 | 0.308 |
戊酸Valerate | 0.93 | 0.99 | 0.015 | 0.011 |
异戊酸Iso-valerate | 1.14 | 1.04 | 0.009 | <0.001 |
Table 5 Effects of HT on the fermentation parameters of soybean straw after 72 h in vitro ruminal incubation
项目 Items | 对照 Control | 水热处理 Hydrothermal treatment | 标准误 SEM | P值 P-value |
---|---|---|---|---|
pH | 6.47 | 6.44 | 0.012 | 0.132 |
氨态氮NH3-N (mmol·L-1) | 13.6 | 11.2 | 0.580 | 0.012 |
总挥发性脂肪酸Total volatile fatty acids (TVFA,mmol·L-1) | 77.9 | 82.8 | 3.240 | 0.043 |
乙酸/丙酸Acetate/propionate | 3.83 | 2.06 | 0.021 | <0.001 |
VFA产氢量Net hydrogen produced per VFA (RNH2,mol·100 mol-1) | 136 | 105 | 0.400 | <0.001 |
挥发性脂肪酸 Volatile fatty acid (VFA,mol·100 mol-1) | ||||
乙酸Acetate | 72.9 | 61.3 | 0.110 | <0.001 |
丙酸Propionate | 19.1 | 29.8 | 0.150 | <0.001 |
丁酸Butyrate | 5.12 | 6.03 | 0.021 | <0.001 |
异丁酸Iso-butyrate | 0.86 | 0.87 | 0.009 | 0.308 |
戊酸Valerate | 0.93 | 0.99 | 0.015 | 0.011 |
异戊酸Iso-valerate | 1.14 | 1.04 | 0.009 | <0.001 |
项目Items | 对照Control | 水热处理Hydrothermal treatment | 标准误SEM | P值P-value |
---|---|---|---|---|
原虫Protozoa | 7.23 | 6.91 | 0.102 | 0.067 |
真菌Fungi | 8.31 | 7.51 | 0.124 | 0.004 |
细菌Bacteria | 10.17 | 10.15 | 0.046 | 0.764 |
产甲烷菌Methanogen | 8.65 | 8.49 | 0.034 | 0.020 |
产琥珀酸丝状杆菌Fibrobacter succinogenes | 8.15 | 7.75 | 0.102 | 0.033 |
白色瘤胃球菌Ruminococcus albus | 5.97 | 6.37 | 0.151 | 0.109 |
黄色瘤胃球菌Ruminococcus flavefaciens | 6.48 | 6.26 | 0.116 | 0.237 |
甲烷杆菌目Methanobacteriales | 8.28 | 8.19 | 0.039 | 0.185 |
甲烷短杆菌Methanobrebacteria | 8.07 | 7.98 | 0.053 | 0.271 |
甲烷微菌目Methanomicrobiales | 5.90 | 6.28 | 0.122 | 0.075 |
Table 6 Effects of HT on the populations of major microorganisms of soybean straw after 72 h in vitro ruminal incubation (log10, copies·mL-1)
项目Items | 对照Control | 水热处理Hydrothermal treatment | 标准误SEM | P值P-value |
---|---|---|---|---|
原虫Protozoa | 7.23 | 6.91 | 0.102 | 0.067 |
真菌Fungi | 8.31 | 7.51 | 0.124 | 0.004 |
细菌Bacteria | 10.17 | 10.15 | 0.046 | 0.764 |
产甲烷菌Methanogen | 8.65 | 8.49 | 0.034 | 0.020 |
产琥珀酸丝状杆菌Fibrobacter succinogenes | 8.15 | 7.75 | 0.102 | 0.033 |
白色瘤胃球菌Ruminococcus albus | 5.97 | 6.37 | 0.151 | 0.109 |
黄色瘤胃球菌Ruminococcus flavefaciens | 6.48 | 6.26 | 0.116 | 0.237 |
甲烷杆菌目Methanobacteriales | 8.28 | 8.19 | 0.039 | 0.185 |
甲烷短杆菌Methanobrebacteria | 8.07 | 7.98 | 0.053 | 0.271 |
甲烷微菌目Methanomicrobiales | 5.90 | 6.28 | 0.122 | 0.075 |
1 | Yu Q, Zhuang X, Wang W, et al. Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass Bioenergy, 2016, 94: 105-109. |
2 | Adesogan A T, Arriola K G, Jiang Y, et al. Symposium review: Technologies for improving fiber utilization. Journal of Dairy Science, 2019, 102(6): 5726-5755. |
3 | Rai S N, Mudgal V D. Effect of alkali and (or) steam treatment of wheat straw or cellulase augmented concentrate mixture on rumen fermentation in goats. Small Ruminant Research, 1996, 19: 219-225. |
4 | Zhao S, Li G, Zheng N, et al. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresource Technology, 2018, 253: 244-251. |
5 | Li M, Cao S, Meng X, et al. The effect of liquid hot water treatment on the chemical structural alteration and the reduced recalcitrance in poplar. Biotechnology for Biofuels, 2017, 10: 237. |
6 | Bobleter O. Hydrothermal degradation of polymers derived from plants. Progress Polymer Science, 1994, 19: 797-841. |
7 | Hendriks A T, Zeeman G. Treatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 2009, 100: 10-18. |
8 | Li H Q, Li C L, Sang T, et al. Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnology for Biofuels, 2013, 6: 76. |
9 | Lopez Gonzalez L M, Pereda Reyes I, Dewulf J, et al. Effect of liquid hot water pretreatment on sugarcane press mud methane yield. Bioresource Technology, 2014, 169: 284-290. |
10 | Jiang W, Chang S, Li H, et al. Liquid hot water treatment on different parts of cotton stalk to facilitate ethanol production. Bioresource Technology, 2015, 176: 175-180. |
11 | Beauchemin K. Dietary mitigation of enteric methane from cattle. Perspectives Agriculture, Veterinary Science Nutrition and Natural Resources, 2009, 4: 35. |
12 | Janssen P H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 2010, 160: 1-22. |
13 | Yu Q, Zhuang X, Lv S, et al. Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresource Technology, 2013, 129: 592-598. |
14 | Aoac. Official methods of analysis (The 16th Edition). Arlington, VA: Association of Official Analytical chemists, 1995. |
15 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
16 | Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 1954, 57: 508-514. |
17 | Yu Q, Zhuang X, Yuan Z, et al. Two-step liquid hot water treatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 2010, 101: 4895-4899. |
18 | Menke K H, Raab L, Salewski A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 1979, 93(1): 217-222. |
19 | Wang M, Wang R, Tang S X, et al. Comparisons of manual and automated incubation systems: Effects of venting procedures on in vitro ruminal fermentation. Livestock Science, 2016, 184: 41-45. |
20 | Wang M, Janssen P H, Sun X Z, et al. A mathematical model to describe in vitro kinetics of H2 gas accumulation. Animal Feed Science and Technology, 2013, 184: 1-16. |
21 | Wang M, Sun X Z, Janssen P H, et al. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Animal Feed Science and Technology, 2014, 194: 1-11. |
22 | Jiao J, Wang P, He Z, et al. In vitro evaluation on neutral detergent fiber and cellulose digestion by post-ruminal microorganisms in goats. Journal of the Science of Food and Agriculture, 2014, 94: 1745-1752. |
23 | Zhang X M, Wang M, Wang R, et al. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture. Journal of the Science of Food and Agriculture, 2018, 98(14): 5205-5211. |
24 | Sylvester J T, Karnati S K, Yu Z, et al. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. The Journal of Nutrition, 2004, 134: 3378-3384. |
25 | Denman S E, McSweeney C S. Development of a realtime PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58: 572-582. |
26 | Hook S E, Wright A D, McBride B W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, 2010, 2010: 1-11. |
27 | Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204: 361-366. |
28 | Yu Y, Lee C, Kim J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 89: 670-679. |
29 | Huang X D, Martinez-Fernandez G, Padmanabha J, et al. Methanogen diversity in indigenous and introduced ruminant species on the Tibetan Plateau. Archaea, 2016, 2016: 10. |
30 | Van Soest P J, Robertson J B. Chemical and physical properties of dietary fibre. Halifax NS Canada, Nutrition Society of Canada, 1976: 13-25. |
31 | Wang M, Sun X Z, Tang S X, et al. Pacheco. Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation. Animal, 2013, 7(6): 920-929. |
32 | Nitsos C K, Choli-Papadopoulou T, Matis K A, et al. Optimization of hydrothermal treatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustain Chem Eng, 2016, 4: 4529-4544. |
33 | Leiva E, Hall M B, Van Horn H H. Performance of dairy cattle fed citrus pulp or corn products as sources of neutral detergent-soluble carbohydrates. Journal of Dairy Science, 2000, 83: 2866-2875. |
34 | Amer S, Hassanat F, Berthiaume R, et al. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Animal Feed Science and Technology, 2012, 177: 23-29. |
35 | Getachew G, Robinson P H, DePeters E J, et al. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 2004, 111: 57-71. |
36 | Song S D, Chen G J, Guo C H, et al. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Animal Feed Science and Technology, 2018, 236: 170-177. |
37 | Ding J M, Cheng S R, Deng K D, et al. Effects of different neutral detergent fiber/nonfiberous carbohydrate diets on methane emission of meat sheep. Chinese Journal of Animal Nutrition, 2017, 29(3): 806-813. |
丁静美, 成述儒, 邓凯东, 等. 不同中性洗涤纤维与非纤维性碳水化合物比值饲粮对肉用绵羊甲烷排放的影响. 动物营养学报, 2017, 29(3): 806-813. | |
38 | Aguerre M J, Wattiaux M A, Powell J M, et al. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science, 2011, 94(6): 3081-3093. |
39 | Wang M, Wang R, Xie T Y, et al. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates. The Journal of Nutrition, 2016, 146(9): 1714-1721. |
40 | Shima S, Warkentin E, Thauer R K, et al. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. Journal of Bioscience and Bioengineering, 2002, 93: 519-530. |
41 | Patra A K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environmental Monitoring and Assessment, 2012, 184: 1929-1952. |
42 | Lechartie R C, Peyraud J L. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. Journal of Dairy Science, 2011, 94(5): 2440-2454. |
43 | Giger-Reverdin S, Rigalma K, Desnoyers M, et al. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. Journal of Dairy Science, 2014, 97(7): 4367-4378. |
44 | Wang Y, McAllister T A. Rumen microbes, enzymes and feed digestion-A review Asian-australas. Journal of Animal Science, 2002, 15: 1659-1676. |
45 | Lewis W H, Sendra K M, Embley T M, et al. Morphology and phylogeny of a new species of anaerobic ciliate, Trimyema finlayi n. sp, with endosymbiotic methanogens. Frontiers in Microbiology, 2018, 9,10.3389/fmicb.2018.00140. |
[1] | Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid [J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167. |
[2] | Yuan-yuan WEN, Mei-qi ZHANG, Tao-tao LIU, Yi-zhao SHEN, Yan-xia GAO, Qiu-feng LI, Yu-feng CAO, Jian-guo LI. Associative effects between whole crop maize silage and mixed silage made from raw potato crisp processing by-product and rice straw as determined using an in vitro gas production technique [J]. Acta Prataculturae Sinica, 2021, 30(8): 154-163. |
[3] | YAN Yan-hong,LI Jun-lin,GUO Xu-sheng,YU Zhu,ZHANG Xin-quan,SUN Juan-juan,LUO Yan. A study on fermentation quality of Italian ryegrass and soybean straw mixed silage [J]. Acta Prataculturae Sinica, 2014, 23(4): 94-99. |
[4] | MAO Sheng-yong, HE Wen-bo, ZHU Wei-yun. Effect of acarbose addition on acute and subacute rumen acidosis in an in vitro fermentation study [J]. Acta Prataculturae Sinica, 2012, 21(6): 130-136. |
[5] | MAO Sheng-yong, LONG Li-ming, ZHU Wei-yun. Effect of Selenomonas ruminantium alone, or in combination with yeast cultures, on in vitro rumen bacterial fermentation [J]. Acta Prataculturae Sinica, 2010, 19(4): 176-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||