Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (9): 159-167.DOI: 10.11686/cyxb2020320
Yan-xia GUO(), Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG()
Received:
2020-07-07
Revised:
2020-09-27
Online:
2021-08-30
Published:
2021-08-30
Contact:
Cheng-jian YANG
Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid[J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167.
项目Item | 含量Content |
---|---|
底物Substrates | |
豆粕Soybean meal (%) | 25.00 |
玉米Corn (%) | 15.00 |
象草Elephant grass (%) | 60.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels | |
粗蛋白Crude protein (CP,%) | 17.48 |
总能Gross energy (GE, MJ·kg-1) | 13.49 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 29.09 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 52.33 |
粗灰分Crude ash (Ash,%) | 7.84 |
钙Calcium (Ca,%) | 0.35 |
磷Phosphorus (P,%) | 0.17 |
Table 1 Composition and nutrient levels of the substrate
项目Item | 含量Content |
---|---|
底物Substrates | |
豆粕Soybean meal (%) | 25.00 |
玉米Corn (%) | 15.00 |
象草Elephant grass (%) | 60.00 |
合计Total (%) | 100.00 |
营养水平Nutrient levels | |
粗蛋白Crude protein (CP,%) | 17.48 |
总能Gross energy (GE, MJ·kg-1) | 13.49 |
酸性洗涤纤维Acid detergent fiber (ADF,%) | 29.09 |
中性洗涤纤维Neutral detergent fiber (NDF,%) | 52.33 |
粗灰分Crude ash (Ash,%) | 7.84 |
钙Calcium (Ca,%) | 0.35 |
磷Phosphorus (P,%) | 0.17 |
菌株Strain | 引物序列Primer sequences (5′-3′) | 扩增长度Amplicon (bp) |
---|---|---|
总细菌Total bacteria[ | F:GTGSTGCAYGGYYGTCGTCA | 123 |
R:ACGTCRTCCMCNCCTTCCTC | ||
真菌Total fungi[ | F:GAGGAAGTAAAAGTCGTAACAAGGTTTC | 120 |
R:CAAATTCACAAAGGGTAGGATGATT | ||
原虫Protozoa[ | F:GCTTTCGWTGGTAGTGTATT | 223 |
R:CTTGCCCTCYAATCGTWCT | ||
产甲烷菌Methanogens[ | F:TTCGGTGGATCDCARAGRGC | 130 |
R:GBARGTCGWAWCCGTAGAATCC | ||
蛋白分解丁酸弧菌Butyrivibrio proteoclasticus[ | F:TCCGGTGGTATGAGATGGGC | 185 |
R:GTCGCTGCATCAGAGTTTCCT | ||
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F:GCCTCAGCGTCAGTAATCG | 187 |
R:GGAGCGTAGGCGGTTTTAC | ||
亨氏丁酸弧菌Butyrivibrio hungatei[ | F:AGGGTAATGCCTGTAGCTC | 264 |
R:TCACCCTCGCGGGAT | ||
非典型丁酸弧菌Atypical butyrivibrio[ | F:GACGGTGTATCAAGTCTGAAGTG | 276 |
R:GCCGGCACTGAAAGACTATGTC |
Table 2 Primers sequence of real-time PCR
菌株Strain | 引物序列Primer sequences (5′-3′) | 扩增长度Amplicon (bp) |
---|---|---|
总细菌Total bacteria[ | F:GTGSTGCAYGGYYGTCGTCA | 123 |
R:ACGTCRTCCMCNCCTTCCTC | ||
真菌Total fungi[ | F:GAGGAAGTAAAAGTCGTAACAAGGTTTC | 120 |
R:CAAATTCACAAAGGGTAGGATGATT | ||
原虫Protozoa[ | F:GCTTTCGWTGGTAGTGTATT | 223 |
R:CTTGCCCTCYAATCGTWCT | ||
产甲烷菌Methanogens[ | F:TTCGGTGGATCDCARAGRGC | 130 |
R:GBARGTCGWAWCCGTAGAATCC | ||
蛋白分解丁酸弧菌Butyrivibrio proteoclasticus[ | F:TCCGGTGGTATGAGATGGGC | 185 |
R:GTCGCTGCATCAGAGTTTCCT | ||
溶纤维丁酸弧菌Butyrivibrio fibrisolvens[ | F:GCCTCAGCGTCAGTAATCG | 187 |
R:GGAGCGTAGGCGGTTTTAC | ||
亨氏丁酸弧菌Butyrivibrio hungatei[ | F:AGGGTAATGCCTGTAGCTC | 264 |
R:TCACCCTCGCGGGAT | ||
非典型丁酸弧菌Atypical butyrivibrio[ | F:GACGGTGTATCAAGTCTGAAGTG | 276 |
R:GCCGGCACTGAAAGACTATGTC |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总产气量Total gas production (mL·g-1) | 162.00±3.70a | 77.00±5.35b | 73.50±1.71b | 72.50±5.68b |
总甲烷量Methane production (mL·g-1) | 8.86±0.04a | 2.78±0.06b | 2.30±0.09c | 2.01±0.03d |
pH值pH value | 6.71±0.01b | 6.81±0.01a | 6.82±0.01a | 6.81±0.01a |
氨态氮NH3-N (mg·100 mL-1) | 12.84±0.17b | 14.99±0.21a | 15.01±0.30a | 14.34±0.32a |
微生物蛋白Microprotein (MCP, mg·mL-1) | 5.01±0.31 | 5.52±0.32 | 4.83±0.07 | 5.53±0.36 |
乙酸Acetate (mmol·L-1) | 11.87±0.23 | 11.33±0.28 | 10.93±0.40 | 11.99±0.59 |
丙酸Propionate (mmol·L-1) | 5.20±0.10 | 4.93±0.17 | 4.66±0.16 | 5.18±0.23 |
丁酸Butyrate (mmol·L-1) | 1.22±0.02 | 1.39±0.03 | 1.24±0.07 | 1.30±0.08 |
异丁酸Isobutyrate (mmol·L-1) | 0.17±0.001a | 0.15±0.001bc | 0.14±0.01c | 0.16±0.001b |
戊酸Valerate (mmol·L-1) | 0.14±0.001 | 0.13±0.001 | 0.13±0.001 | 0.14±0.01 |
异戊酸Isovalerate (mmol·L-1) | 0.37±0.01a | 0.31±0.01b | 0.31±0.01b | 0.34±0.01a |
总挥发性脂肪酸Total volatile fatty acid (TVFA, mmol·L-1) | 18.97±0.36 | 18.24±0.49 | 17.41±0.63 | 19.12±0.92 |
乙酸/丙酸Acetate to propionate ratio | 2.28±0.01 | 2.31±0.04 | 2.34±0.02 | 2.31±0.01 |
Table 3 The cumulative total gas production, total methane production, pH value, NH3-N, MCP and volatile fatty acid content after 24 h in vitro fermentation
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总产气量Total gas production (mL·g-1) | 162.00±3.70a | 77.00±5.35b | 73.50±1.71b | 72.50±5.68b |
总甲烷量Methane production (mL·g-1) | 8.86±0.04a | 2.78±0.06b | 2.30±0.09c | 2.01±0.03d |
pH值pH value | 6.71±0.01b | 6.81±0.01a | 6.82±0.01a | 6.81±0.01a |
氨态氮NH3-N (mg·100 mL-1) | 12.84±0.17b | 14.99±0.21a | 15.01±0.30a | 14.34±0.32a |
微生物蛋白Microprotein (MCP, mg·mL-1) | 5.01±0.31 | 5.52±0.32 | 4.83±0.07 | 5.53±0.36 |
乙酸Acetate (mmol·L-1) | 11.87±0.23 | 11.33±0.28 | 10.93±0.40 | 11.99±0.59 |
丙酸Propionate (mmol·L-1) | 5.20±0.10 | 4.93±0.17 | 4.66±0.16 | 5.18±0.23 |
丁酸Butyrate (mmol·L-1) | 1.22±0.02 | 1.39±0.03 | 1.24±0.07 | 1.30±0.08 |
异丁酸Isobutyrate (mmol·L-1) | 0.17±0.001a | 0.15±0.001bc | 0.14±0.01c | 0.16±0.001b |
戊酸Valerate (mmol·L-1) | 0.14±0.001 | 0.13±0.001 | 0.13±0.001 | 0.14±0.01 |
异戊酸Isovalerate (mmol·L-1) | 0.37±0.01a | 0.31±0.01b | 0.31±0.01b | 0.34±0.01a |
总挥发性脂肪酸Total volatile fatty acid (TVFA, mmol·L-1) | 18.97±0.36 | 18.24±0.49 | 17.41±0.63 | 19.12±0.92 |
乙酸/丙酸Acetate to propionate ratio | 2.28±0.01 | 2.31±0.04 | 2.34±0.02 | 2.31±0.01 |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
C6:0 | 0.15±0.04c | 0.20±0.04bc | 0.30±0.03b | 0.45±0.03a |
C8:0 | 1.60±0.22 | 1.22±0.48 | 2.07±0.10 | 1.78±0.07 |
C10:0 | 0.38±0.04b | 0.38±0.30b | 0.56±0.04a | 0.58±0.05a |
C11:0 | 0.26±0.02 | 0.26±0.06 | 0.20±0.02 | 0.26±0.05 |
C12:0 | 0.47±0.04 | 0.43±0.03 | 0.43±0.05 | 0.42±0.02 |
C13:0 | 6.03±2.02 | 4.95±0.19 | 2.74±0.23 | 2.68±0.20 |
C14:1n5 | 0.90±0.03 | 0.95±0.05 | 0.90±0.06 | 0.82±0.06 |
C14:0 | 3.02±0.28 | 3.58±0.26 | 3.25±0.29 | 0.82±0.06 |
C15:0 | 3.23±0.55 | 3.97±0.75 | 2.43±0.23 | 2.86±0.23 |
C16:1n7 | 0.36±0.07 | 0.36±0.03 | 0.70±0.28 | 0.89±0.30 |
C16:0 | 51.53±9.19 | 55.85±2.27 | 48.91±3.40 | 54.87±7.97 |
C17:0 | 1.86±0.31 | 2.30±0.44 | 1.45±0.18 | 1.94±0.21 |
C18:3n6 | 0.71±0.10 | 1.01±0.13 | 0.93±0.15 | 0.82±0.09 |
C18:3n3 | 0.55±0.16 | 0.60±0.12 | 0.97±0.33 | 0.56±0.22 |
C18:2n6c | 15.27±3.28 | 16.30±0.72 | 11.54±2.16 | 9.33±2.97 |
t11-C18:1 | 12.12±2.01b | 13.85±0.56ab | 14.89±1.39ab | 17.92±1.73a |
C18:1n9c | 35.96±6.95 | 49.75±9.74 | 31.94±7.14 | 51.53±4.94 |
C18:0 | 75.94±15.85 | 61.13±1.01 | 54.84±4.48 | 69.30±9.17 |
C18:2 cis-9,trans-11 | 0.67±0.16b | 1.13±0.23a | 0.42±0.03b | 0.49±0.01b |
C18:2 trans-10,cis-12 | 0.51±0.11b | 0.92±0.09a | 0.43±0.14b | 0.38±0.07b |
C19:0 | 0.33±0.04b | 0.37±0.03b | 0.41±0.04b | 0.62±0.09a |
C20:4n6 | 0.94±0.31 | 0.93±0.13 | 0.88±0.38 | 0.43±0.07 |
C20:5n3 (EPA) | 0.62±0.18ab | 0.80±0.08a | 0.59±0.10ab | 0.34±0.07b |
C20:2n6 | 0.42±0.03 | 0.74±0.18 | 0.75±0.19 | 0.68±0.08 |
C20:3n6 | 4.93±1.48 | 4.66±0.36 | 3.55±1.20 | 2.62±1.37 |
C20:1 | 1.29±0.56 | 1.72±0.74 | 0.37±0.10 | 0.67±0.23 |
C20:3n3 | 0.44±0.12 | 0.81±0.29 | 0.29±0.03 | 0.44±0.10 |
C20:0 | 2.76±0.56 | 3.42±0.68 | 2.44±0.30 | 3.42±0.60 |
C21:0 | 4.06±1.20a | 2.15±0.46ab | 4.04±1.20a | 1.10±0.16b |
C22:6n3 (DHA) | 0.69±0.13b | 0.40±0.08b | 1.02±0.29a | 0.65±0.10b |
C22:2n6 | 78.51±2.28a | 76.49±5.62a | 9.83±4.15b | 5.67±1.84b |
C22:1n9 | 0.68±0.13a | 0.44±0.06ab | 0.27±0.08b | 0.59±0.02a |
C22:0 | 0.95±0.19 | 1.42±0.45 | 0.87±0.16 | 1.47±0.31 |
C23:0 | 0.90±0.18 | 0.86±0.24 | 0.87±0.31 | 0.51±0.07 |
C24:1n9 | 0.32±0.04 | 2.25±1.69 | 0.82±0.16 | 0.65±0.21 |
C24:0 | 4.15±1.38 | 3.48±0.70 | 3.16±0.38 | 2.56±0.41 |
SFA | 179.27±29.24 | 151.60±5.03 | 134.79±4.31 | 156.13±15.06 |
MUFA | 51.62±8.88 | 69.31±9.60 | 49.88±8.58 | 73.07±5.53 |
PUFA | 104.25±24.28a | 104.78±6.18a | 31.19±6.26b | 22.39±6.44b |
UFA | 155.87±27.28a | 174.91±9.19a | 81.82±9.45b | 96.15±10.36b |
UFA/SFA | 0.87±0.10b | 1.15±0.03a | 0.60±0.06c | 0.61±0.02c |
Table 4 Effect of adding sodium nitrate of different doses on fatty acid concentration of rumen fluid in vitro (μg·mL-1)
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
C6:0 | 0.15±0.04c | 0.20±0.04bc | 0.30±0.03b | 0.45±0.03a |
C8:0 | 1.60±0.22 | 1.22±0.48 | 2.07±0.10 | 1.78±0.07 |
C10:0 | 0.38±0.04b | 0.38±0.30b | 0.56±0.04a | 0.58±0.05a |
C11:0 | 0.26±0.02 | 0.26±0.06 | 0.20±0.02 | 0.26±0.05 |
C12:0 | 0.47±0.04 | 0.43±0.03 | 0.43±0.05 | 0.42±0.02 |
C13:0 | 6.03±2.02 | 4.95±0.19 | 2.74±0.23 | 2.68±0.20 |
C14:1n5 | 0.90±0.03 | 0.95±0.05 | 0.90±0.06 | 0.82±0.06 |
C14:0 | 3.02±0.28 | 3.58±0.26 | 3.25±0.29 | 0.82±0.06 |
C15:0 | 3.23±0.55 | 3.97±0.75 | 2.43±0.23 | 2.86±0.23 |
C16:1n7 | 0.36±0.07 | 0.36±0.03 | 0.70±0.28 | 0.89±0.30 |
C16:0 | 51.53±9.19 | 55.85±2.27 | 48.91±3.40 | 54.87±7.97 |
C17:0 | 1.86±0.31 | 2.30±0.44 | 1.45±0.18 | 1.94±0.21 |
C18:3n6 | 0.71±0.10 | 1.01±0.13 | 0.93±0.15 | 0.82±0.09 |
C18:3n3 | 0.55±0.16 | 0.60±0.12 | 0.97±0.33 | 0.56±0.22 |
C18:2n6c | 15.27±3.28 | 16.30±0.72 | 11.54±2.16 | 9.33±2.97 |
t11-C18:1 | 12.12±2.01b | 13.85±0.56ab | 14.89±1.39ab | 17.92±1.73a |
C18:1n9c | 35.96±6.95 | 49.75±9.74 | 31.94±7.14 | 51.53±4.94 |
C18:0 | 75.94±15.85 | 61.13±1.01 | 54.84±4.48 | 69.30±9.17 |
C18:2 cis-9,trans-11 | 0.67±0.16b | 1.13±0.23a | 0.42±0.03b | 0.49±0.01b |
C18:2 trans-10,cis-12 | 0.51±0.11b | 0.92±0.09a | 0.43±0.14b | 0.38±0.07b |
C19:0 | 0.33±0.04b | 0.37±0.03b | 0.41±0.04b | 0.62±0.09a |
C20:4n6 | 0.94±0.31 | 0.93±0.13 | 0.88±0.38 | 0.43±0.07 |
C20:5n3 (EPA) | 0.62±0.18ab | 0.80±0.08a | 0.59±0.10ab | 0.34±0.07b |
C20:2n6 | 0.42±0.03 | 0.74±0.18 | 0.75±0.19 | 0.68±0.08 |
C20:3n6 | 4.93±1.48 | 4.66±0.36 | 3.55±1.20 | 2.62±1.37 |
C20:1 | 1.29±0.56 | 1.72±0.74 | 0.37±0.10 | 0.67±0.23 |
C20:3n3 | 0.44±0.12 | 0.81±0.29 | 0.29±0.03 | 0.44±0.10 |
C20:0 | 2.76±0.56 | 3.42±0.68 | 2.44±0.30 | 3.42±0.60 |
C21:0 | 4.06±1.20a | 2.15±0.46ab | 4.04±1.20a | 1.10±0.16b |
C22:6n3 (DHA) | 0.69±0.13b | 0.40±0.08b | 1.02±0.29a | 0.65±0.10b |
C22:2n6 | 78.51±2.28a | 76.49±5.62a | 9.83±4.15b | 5.67±1.84b |
C22:1n9 | 0.68±0.13a | 0.44±0.06ab | 0.27±0.08b | 0.59±0.02a |
C22:0 | 0.95±0.19 | 1.42±0.45 | 0.87±0.16 | 1.47±0.31 |
C23:0 | 0.90±0.18 | 0.86±0.24 | 0.87±0.31 | 0.51±0.07 |
C24:1n9 | 0.32±0.04 | 2.25±1.69 | 0.82±0.16 | 0.65±0.21 |
C24:0 | 4.15±1.38 | 3.48±0.70 | 3.16±0.38 | 2.56±0.41 |
SFA | 179.27±29.24 | 151.60±5.03 | 134.79±4.31 | 156.13±15.06 |
MUFA | 51.62±8.88 | 69.31±9.60 | 49.88±8.58 | 73.07±5.53 |
PUFA | 104.25±24.28a | 104.78±6.18a | 31.19±6.26b | 22.39±6.44b |
UFA | 155.87±27.28a | 174.91±9.19a | 81.82±9.45b | 96.15±10.36b |
UFA/SFA | 0.87±0.10b | 1.15±0.03a | 0.60±0.06c | 0.61±0.02c |
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总细菌Total bacteria (×1010) | 10.16±1.64b | 18.82±2.03a | 8.29±2.06b | 7.41±1.57b |
真菌Total fungi (×1010) | 2.57±0.39b | 4.31±0.51a | 1.46±0.46b | 1.25±0.08b |
原虫Protozoa (×107) | 33.50±7.94a | 4.46±1.37b | 0.51±0.34b | 0.13±0.01b |
产甲烷菌Methanogens (×109) | 3.13±0.38ab | 3.92±0.53a | 1.58±0.58bc | 1.01±0.07c |
溶纤维丁酸弧菌B. fibrisolvens (×108) | 1.20±0.22b | 11.18±1.34a | 4.23±1.56b | 2.76±1.12b |
蛋白分解丁酸弧菌B. proteoclasticus (×108) | 0.78±0.13b | 3.52±0.43a | 1.34±0.31b | 1.60±0.10b |
非典型丁酸弧菌A. butyrivibrio (×106) | 4.55±2.02c | 46.29±5.04a | 18.31±3.75b | 0.69±0.05c |
亨氏丁酸弧菌B. hungatei (×107) | 4.00±0.67b | 13.26±0.71a | 2.54±1.26bc | 0.23±0.02c |
Table 5 Effects of adding sodium nitrate of different doses on the number of rumen microorganisms (copies·mL-1)
项目 Item | 硝酸钠浓度NaNO3 concentration | |||
---|---|---|---|---|
0 mg·mL-1 | 1 mg·mL-1 | 2 mg·mL-1 | 3 mg·mL-1 | |
总细菌Total bacteria (×1010) | 10.16±1.64b | 18.82±2.03a | 8.29±2.06b | 7.41±1.57b |
真菌Total fungi (×1010) | 2.57±0.39b | 4.31±0.51a | 1.46±0.46b | 1.25±0.08b |
原虫Protozoa (×107) | 33.50±7.94a | 4.46±1.37b | 0.51±0.34b | 0.13±0.01b |
产甲烷菌Methanogens (×109) | 3.13±0.38ab | 3.92±0.53a | 1.58±0.58bc | 1.01±0.07c |
溶纤维丁酸弧菌B. fibrisolvens (×108) | 1.20±0.22b | 11.18±1.34a | 4.23±1.56b | 2.76±1.12b |
蛋白分解丁酸弧菌B. proteoclasticus (×108) | 0.78±0.13b | 3.52±0.43a | 1.34±0.31b | 1.60±0.10b |
非典型丁酸弧菌A. butyrivibrio (×106) | 4.55±2.02c | 46.29±5.04a | 18.31±3.75b | 0.69±0.05c |
亨氏丁酸弧菌B. hungatei (×107) | 4.00±0.67b | 13.26±0.71a | 2.54±1.26bc | 0.23±0.02c |
1 | Appuhamy J A R, France J, Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology, 2016, 22(9): 3039-3056. |
2 | Zu H C, Xu J, Cong Y Y. Reducing rumen methane emission through regulating rumen microorganisms by adding hydrogen-consuming compounds. Chinese Journal of Animal Nutrition, 2019, 31(11): 4967-4972. |
俎昊辰, 许静, 丛玉艳. 通过添加耗氢化合物调节瘤胃微生物实现甲烷减排. 动物营养学报, 2019, 31(11): 4967-4972. | |
3 | Hulshof R, Berndt A, Gerrits W, et al. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of Animal Science, 2012, 90(7): 2317-2323. |
4 | Huyen T, Do H Q, Preston T R, et al. Nitrate as fermentable nitrogen supplement to reduce rumen methane production. Livestock Research for Rural Development, 2010, 22(8): 146. |
5 | Li L, Davis J, Nolan J, et al. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Animal Production Science, 2012, 52: 653-658. |
6 | Hafoot C G,Hazlewood G P. Lipid metabolism in the rumen//Hobson P N. The rumen microbial ecosystem. Netherlands: Springer, 1998: 382-426. |
7 | Sun P F, Yao J H, Liu J X. Research progress on hydrogenation of octadecane unsaturated fatty acids in rumen. Journal of Animal Science, 2007(S1): 508-514. |
孙攀峰, 姚建红, 刘建新. 瘤胃十八碳不饱和脂肪酸氢化的研究进展. 动物营养学报, 2007(S1): 508-514. | |
8 | Menke K H, Raab L, Salewski A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. |
9 | Hu W L, Wang J K, Lv J M, et al. Rapid gas chromatogram determination of methane, organic acid in vitro ruminal fermentation products. Journal of Zhejiang University (Agriculture & Life Sciences), 2006, 32(2): 217-221. |
胡伟莲, 王佳堃, 吕建敏, 等. 瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定. 浙江大学学报(农业与生命科学版), 2006, 32(2): 217-221. | |
10 | Lu Q Y. Effects of different ratios of dietary starch to neutral detergent fiber on rumen blood, milk and feces metabolism status in high producing lactating cows . Hohhot: Inner Mongolia Agricultural University, 2014. |
鲁秋英. 日粮淀粉/FNDF比例对高产奶牛瘤胃液、血液、乳液和粪便相关代谢指标影响的调查研究. 呼和浩特: 内蒙古农业大学, 2014. | |
11 | Li X Z, Yan C G, Choi S H, et al. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian Australasian Journal of Animal Science, 2009, 22(1): 82-89. |
12 | Xu T, Tao H, Chang G, et al. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Veterinary Research, 2015, 11(1): 1-11. |
13 | Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572-582. |
14 | Shingfield K J, Kairenius P, Arölä A, et al. Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. The Journal of Nutrition, 2012, 142(8): 1437-1448. |
15 | Zoetendal E G. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology, 1998, 64(10): 3854. |
16 | Deman S E, Tomkins N W, Deman S E, et al. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology, 2007, 62(3): 313-322. |
17 | Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2007, 75(1): 165-174. |
18 | Nguyen S H, Li L, Hegarty R S. Effects of rumen protozoa of brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australasian Journal of Animal Sciences, 2016, 29(6): 807. |
19 | Sar C, Mwenya B, Santoso B, et al. Effect of Escherichiacoli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Animal Feed Science and Technology, 2005, 118(3/4): 295-306. |
20 | Zhou Z, Meng Q, Yu Z. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in vitro ruminal cultures. Applied and Environmental Microbiology, 2011, 77(8): 2634-2639. |
21 | Joblin K N. Ruminal acetogens and their potential to lower ruminant methane emissions. Crop & Pasture Science, 1999, 50(8): 1307-1314. |
22 | Kepler C R, Hirons K P, McNeill J J, et al. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. Journal of Biological Chemistry, 1966, 241(6): 1350-1354. |
23 | Vande V J, Joblin K N. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Letters in Applied Microbiology, 2003, 37(5): 424-428. |
24 | Li D, Wang J Q, Bu D P. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro. Bmc Research Notes, 2012, 5(1): 97. |
25 | Yang C, McKain N, McCartney C A, et al. Consequences of inhibiting methanogenesis on the biohydrogenation of fatty acids in bovine ruminal digesta. Animal Feed Science and Technology, 2019, 254: 114-189. |
26 | Guo Y X, Li M W, Peng L J, et al. Effects of sodium nitrate on methane production and fatty acid hydrogenation process of buffalo in vitro fermentation. Chinese Animal Husbandry & Veterinary Medicine, 2020, 47(7): 2071-2080. |
郭艳霞, 李孟伟, 彭丽娟, 等. 体外法研究硝酸钠调控水牛瘤胃甲烷生成对脂肪酸生物氢化途径的影响. 中国畜牧兽医, 2020, 47(7): 2071-2080. | |
27 | Wang R, Tan L W, Wang M, et al. Effect of sodium nitrate and 2-Bromoethanesulphonate on methane, hydrogen and volatile fatty acids production of in vitro ruminal fermentation. Chinese Journal of Animal Nutrition, 2015, 27(5): 1586-1595. |
王荣, 谭利伟, 王敏, 等. 硝酸钠和2-溴乙烷磺酸钠对山羊体外瘤胃发酵甲烷、氢气和挥发性脂肪酸生成的影响. 动物营养学报, 2015, 27(5): 1586-1595. | |
28 | Fan X, Dong H M, Han L J, et al. Experimental study on the factors affecting methane emission of beef cattle. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 179-182. |
樊霞, 董红敏, 韩鲁佳, 等. 肉牛甲烷排放影响因素的实验研究. 农业工程学报, 2006, 22(8): 179-182. | |
29 | Iwamoto M, Asanuma N, Hino T. Ability of Selenomonas ruminantium, Veillonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe, 2002, 8(8): 209-215. |
30 | Sun Y K. The effect of cysteamine hydrochloride and nitrate supplementation on methane emission and growth performance of beef cattle. Changchun: Jilin Agricultural University, 2017. |
孙雨坤. 半胱胺盐酸盐和硝酸盐对肉牛甲烷代谢及生长性能的影响. 长春: 吉林农业大学, 2017. |
[1] | Yuan-yuan WEN, Mei-qi ZHANG, Tao-tao LIU, Yi-zhao SHEN, Yan-xia GAO, Qiu-feng LI, Yu-feng CAO, Jian-guo LI. Associative effects between whole crop maize silage and mixed silage made from raw potato crisp processing by-product and rice straw as determined using an in vitro gas production technique [J]. Acta Prataculturae Sinica, 2021, 30(8): 154-163. |
[2] | Li-feng DONG, Xiu-zhu YANG, Yan-hua GAO, Bin-chang LI, Bei WANG, Qi-yu DIAO. Effects of dietary NDF∶NFC ratio on growth performance, nutritive digestibility, ruminal fermentation characteristics and methane emissions of Holstein heifers [J]. Acta Prataculturae Sinica, 2021, 30(2): 156-165. |
[3] | JIN Ji-peng, GUO Wu-jun, ZHANG Xiao-yan, ZHANG Chang-ji, ZHANG Yong, WANG Chun-hui, ZHANG Li-ping. Impact of cold-season grazing and supplementary feeding on rumen metabolic parameters and micro-organisms in the ewes of Gansu Alpine Fine Wool Sheep [J]. Acta Prataculturae Sinica, 2018, 27(7): 93-103. |
[4] | WEI Huan, LI Xiang-yu, YU Quan-ping, CHEN Yong. Effects of five plant phenolics on in vitro ruminal fermentation and methane production of a high concentrate-based substrate [J]. Acta Prataculturae Sinica, 2018, 27(11): 192-199. |
[5] | HU Min-Jie, TONG Chuan, ZOU Fang-Fang. Effects of nitrogen input on CH4 production, oxidation and transport in soils, and mechanisms: a review [J]. Acta Prataculturae Sinica, 2015, 24(6): 204-212. |
[6] | XIA Zeng-run, DU Feng-feng, LI Si, ZHANG Ji-yu, LIU Yong, HUO Ya-xin, KONG Lin-fang. Construction of an EMS induced mutant library and identification of morphological characteristics in Medicago sativa [J]. Acta Prataculturae Sinica, 2014, 23(2): 215-222. |
[7] | SUN Wan-long,SUN Zhi-gao,SUN Wen-guang,WENG Hong,LV Ying-chun,JIANG Huan-huan,WANG Ling-ling. The methane oxidation potential of soils in tidal marshes of the Yellow River Estuary and its responses to import of organic matter [J]. Acta Prataculturae Sinica, 2014, 23(1): 104-112. |
[8] | ZHANG Zhen-wei,WANG Cong,LIU Qiang,BAI Yuan-sheng,SHI Zhou-ge,LIU Xiao-ni,GAO Shu-wen. Effects of isobutyrate on daily gain, dietary nutrient digestion and methane emissions in Simmental beef cattle [J]. Acta Prataculturae Sinica, 2014, 23(1): 346-352. |
[9] | WANG Dong-sheng, HUANG Jiang-li, ZHANG Zhi-hong, TIAN Xiao-juan, HUANG Huang, YIN Yu-long, DING Jian-nan. Effects of plant solid powder and ethanol extract of Impatiens balsamina on microbial metabolic parameters during in vitro rumen fermentation [J]. Acta Prataculturae Sinica, 2013, 22(2): 87-93. |
[10] | MAO Sheng-yong, HE Wen-bo, ZHU Wei-yun. Effect of acarbose addition on acute and subacute rumen acidosis in an in vitro fermentation study [J]. Acta Prataculturae Sinica, 2012, 21(6): 130-136. |
[11] | WANG Ling-ling, SUN Zhi-gao, MOU Xiao-jie, SUN Wan-long, SONG Hong-li, JIANG Huan-huan. A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary [J]. Acta Prataculturae Sinica, 2011, 20(3): 51-61. |
[12] | WANG Xin-feng, MAO Sheng-yong, ZHU Wei-yun. Effects of gypenoside on in vitro ruminal microbial methane production and fermentation characteristics [J]. Acta Prataculturae Sinica, 2011, 20(2): 52-59. |
[13] | MAO Sheng-yong, LONG Li-ming, ZHU Wei-yun. Effect of Selenomonas ruminantium alone, or in combination with yeast cultures, on in vitro rumen bacterial fermentation [J]. Acta Prataculturae Sinica, 2010, 19(4): 176-186. |
[14] | MAO Sheng-yong, WANG Xing-feng, ZHU Wei-yun. Effects of disodium fumarate on in vitro methane production and fermentation of rumen microbial [J]. Acta Prataculturae Sinica, 2010, 19(2): 69-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||