Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (2): 192-202.DOI: 10.11686/cyxb2020522
Ya-dong JIN1(), Hai-xia ZHAO1, Rui-qi GUI1, Qing MA2, Yu-xiang ZHOU1()
Received:
2020-11-25
Revised:
2020-12-31
Online:
2022-02-20
Published:
2021-12-22
Contact:
Yu-xiang ZHOU
Ya-dong JIN, Hai-xia ZHAO, Rui-qi GUI, Qing MA, Yu-xiang ZHOU. Effects of dietary concentrate level and chromium-methionine supplementation on ruminal fermentation, and ruminal bacterial and fatty acid composition in Tan lambs[J]. Acta Prataculturae Sinica, 2022, 31(2): 192-202.
项目 Items | 含量 Content | |
---|---|---|
LCa | HCa | |
原料组成Ingredient composition | ||
青贮玉米 Maize silage (%) | 33.00 | 15.00 |
苜蓿干草 Alfalfa hay (15% CP) | 32.00 | 30.00 |
玉米 Corn grain (%) | 11.24 | 29.74 |
豆粕 Soybean meal (43% CP) | 14.00 | 14.50 |
麦麸 Wheat bran (%) | 5.00 | 6.00 |
食盐NaCl (%) | 0.76 | 0.76 |
预混料b Mineral and vitamin premix (%) | 4.00 | 4.00 |
营养水平 Nutrient levels | ||
代谢能Metabolizable energy (ME c, MJ·kg-1) | 8.70 | 9.40 |
粗蛋白 Crude protein (CP,%) | 14.50 | 14.50 |
钙 Calcium (Ca,%) | 0.44 | 0.39 |
磷 Phosphorus (P,%) | 0.26 | 0.28 |
中性洗涤纤维 Neutral detergent fiber (NDF,%) | 37.91 | 29.45 |
酸性洗涤纤维 Acid detergent fiber (ADF,%) | 25.06 | 19.20 |
铬 Chromium(Cr, mg·kg-1 DM) | 0.28 | 0.24 |
Table 1 Composition and nutrition levels of diet (DM basis)
项目 Items | 含量 Content | |
---|---|---|
LCa | HCa | |
原料组成Ingredient composition | ||
青贮玉米 Maize silage (%) | 33.00 | 15.00 |
苜蓿干草 Alfalfa hay (15% CP) | 32.00 | 30.00 |
玉米 Corn grain (%) | 11.24 | 29.74 |
豆粕 Soybean meal (43% CP) | 14.00 | 14.50 |
麦麸 Wheat bran (%) | 5.00 | 6.00 |
食盐NaCl (%) | 0.76 | 0.76 |
预混料b Mineral and vitamin premix (%) | 4.00 | 4.00 |
营养水平 Nutrient levels | ||
代谢能Metabolizable energy (ME c, MJ·kg-1) | 8.70 | 9.40 |
粗蛋白 Crude protein (CP,%) | 14.50 | 14.50 |
钙 Calcium (Ca,%) | 0.44 | 0.39 |
磷 Phosphorus (P,%) | 0.26 | 0.28 |
中性洗涤纤维 Neutral detergent fiber (NDF,%) | 37.91 | 29.45 |
酸性洗涤纤维 Acid detergent fiber (ADF,%) | 25.06 | 19.20 |
铬 Chromium(Cr, mg·kg-1 DM) | 0.28 | 0.24 |
基因名称Gene name | 上下游引物序列 Primers sequence (5'-3') | 大小Size (bp) | 来源Source |
---|---|---|---|
总菌General bacteria | F-AGAGTTTGATCCTGGCTCAGGA T-TGCTGCCTCCCGTAGGAGT | - | [ |
硬脂酸溶纤维丁酸弧菌Butyrivibrio SA | F-TGAAAAACTCCGGTGGTATGAGAT R-CCGTGTCTCAGTCCCAATGTG | 126 | [ |
反式油酸溶纤维丁酸弧菌Butyrivibrio VA | F-TGCATTGGAAACTGTAGAACTAGAGTGT R-GCGTCAGTAATCGTCCAGTAAGC | 124 | [ |
白色瘤胃球菌R. albus | F-GTTTTAGGATTGTAAACCTCTGTCTT R-CCTAATATCTACGCATTTCACCGC | 270 | [ |
黄色瘤胃球菌R. flavefaciens | F-GATGCCGCGTGGAGGAAGAAG R-CATTTCACCGCTACACCAGGAA | 286 | [ |
蛋白溶解梭菌B. proteoclasticus | F-TCCTAGTGTAGCGGTGAAATG R-TTAGCGACGGCACTGAATGCCTAT | 188 | [ |
解脂厌氧弧杆菌Anaerovibrio lipolytica | F-TTGGGTGTTAGAAATGGATTCTAGTG R-TCGAAATGTTGTCCCCATCTG | 82 | [ |
埃式巨型球菌M. elsdenii | F-AGATGGGGACAACAGCTGGA T-CGAAAGCTCCGAAGAGCCT | 102 | [ |
Table 2 Primers used for real-time PCR quantification
基因名称Gene name | 上下游引物序列 Primers sequence (5'-3') | 大小Size (bp) | 来源Source |
---|---|---|---|
总菌General bacteria | F-AGAGTTTGATCCTGGCTCAGGA T-TGCTGCCTCCCGTAGGAGT | - | [ |
硬脂酸溶纤维丁酸弧菌Butyrivibrio SA | F-TGAAAAACTCCGGTGGTATGAGAT R-CCGTGTCTCAGTCCCAATGTG | 126 | [ |
反式油酸溶纤维丁酸弧菌Butyrivibrio VA | F-TGCATTGGAAACTGTAGAACTAGAGTGT R-GCGTCAGTAATCGTCCAGTAAGC | 124 | [ |
白色瘤胃球菌R. albus | F-GTTTTAGGATTGTAAACCTCTGTCTT R-CCTAATATCTACGCATTTCACCGC | 270 | [ |
黄色瘤胃球菌R. flavefaciens | F-GATGCCGCGTGGAGGAAGAAG R-CATTTCACCGCTACACCAGGAA | 286 | [ |
蛋白溶解梭菌B. proteoclasticus | F-TCCTAGTGTAGCGGTGAAATG R-TTAGCGACGGCACTGAATGCCTAT | 188 | [ |
解脂厌氧弧杆菌Anaerovibrio lipolytica | F-TTGGGTGTTAGAAATGGATTCTAGTG R-TCGAAATGTTGTCCCCATCTG | 82 | [ |
埃式巨型球菌M. elsdenii | F-AGATGGGGACAACAGCTGGA T-CGAAAGCTCCGAAGAGCCT | 102 | [ |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
pH | 6.86a | 6.46b | 6.47b | 6.35b | 0.06 | 0.0013 | 0.0003 | 0.9576 | 1.0000 |
氨态氮NH3-N (mmol·L-1) | 12.15 | 13.69 | 14.84 | 12.02 | 0.77 | 0.5429 | 0.8224 | 0.4448 | 0.2999 |
微生物蛋白MCP (μg·L-1) | 376.50b | 437.02a | 385.08ab | 411.66ab | 18.69 | 0.6343 | 0.0119 | 0.5880 | 0.4339 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 112.38 | 123.16 | 121.11 | 110.59 | 3.55 | 0.5423 | 0.1578 | 0.2851 | 0.6711 |
挥发性脂肪酸 Volatile fatty acids (VFA) | |||||||||
乙酸Acetate (%) | 68.88a | 61.06b | 63.91b | 61.09b | 0.91 | 0.0007 | 0.0011 | 0.9847 | 0.1143 |
丙酸Propionate (%) | 17.91b | 24.51a | 19.99ab | 24.08a | 0.99 | 0.0327 | 0.0012 | 0.8753 | 0.0891 |
丁酸 Butyrate (%) | 10.69 | 11.59 | 13.57 | 11.98 | 0.45 | 0.1390 | 0.2493 | 0.7690 | 0.1376 |
异丁酸 Isobutyrate (%) | 0.80 | 0.75 | 0.69 | 0.77 | 0.03 | 0.7451 | 0.5461 | 0.8995 | 0.4787 |
戊酸 Valerate (%) | 0.90b | 1.20a | 1.05a | 1.14a | 0.04 | 0.0593 | 0.0115 | 0.5849 | 0.2258 |
异戊酸 Isovalerate (%) | 0.82 | 0.88 | 0.78 | 0.94 | 0.06 | 0.8175 | 0.5773 | 0.7934 | 0.4743 |
乙酸/丙酸 Acetate∶propionate | 3.85a | 2.53c | 3.26ab | 2.69bc | 0.16 | 0.0037 | 0.0002 | 0.6751 | 0.0671 |
Table 3 Effects of dietary concentrate level and Cr-Met supplementation on rumen fermentation parameter
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
pH | 6.86a | 6.46b | 6.47b | 6.35b | 0.06 | 0.0013 | 0.0003 | 0.9576 | 1.0000 |
氨态氮NH3-N (mmol·L-1) | 12.15 | 13.69 | 14.84 | 12.02 | 0.77 | 0.5429 | 0.8224 | 0.4448 | 0.2999 |
微生物蛋白MCP (μg·L-1) | 376.50b | 437.02a | 385.08ab | 411.66ab | 18.69 | 0.6343 | 0.0119 | 0.5880 | 0.4339 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 112.38 | 123.16 | 121.11 | 110.59 | 3.55 | 0.5423 | 0.1578 | 0.2851 | 0.6711 |
挥发性脂肪酸 Volatile fatty acids (VFA) | |||||||||
乙酸Acetate (%) | 68.88a | 61.06b | 63.91b | 61.09b | 0.91 | 0.0007 | 0.0011 | 0.9847 | 0.1143 |
丙酸Propionate (%) | 17.91b | 24.51a | 19.99ab | 24.08a | 0.99 | 0.0327 | 0.0012 | 0.8753 | 0.0891 |
丁酸 Butyrate (%) | 10.69 | 11.59 | 13.57 | 11.98 | 0.45 | 0.1390 | 0.2493 | 0.7690 | 0.1376 |
异丁酸 Isobutyrate (%) | 0.80 | 0.75 | 0.69 | 0.77 | 0.03 | 0.7451 | 0.5461 | 0.8995 | 0.4787 |
戊酸 Valerate (%) | 0.90b | 1.20a | 1.05a | 1.14a | 0.04 | 0.0593 | 0.0115 | 0.5849 | 0.2258 |
异戊酸 Isovalerate (%) | 0.82 | 0.88 | 0.78 | 0.94 | 0.06 | 0.8175 | 0.5773 | 0.7934 | 0.4743 |
乙酸/丙酸 Acetate∶propionate | 3.85a | 2.53c | 3.26ab | 2.69bc | 0.16 | 0.0037 | 0.0002 | 0.6751 | 0.0671 |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
硬脂酸溶纤维丁酸弧菌 Butyrivibrio SA | 0.2677a | 0.4199a | 0.1447b | 0.1138b | 0.0228 | 0.0019 | 0.9064 | 0.0028 | 0.1509 |
反式油酸溶纤维丁酸弧菌 Butyrivibrio VA | 0.2652a | 0.1132b | 0.0898bc | 0.0736c | 0.0240 | 0.0003 | 0.0004 | 0.0222 | 0.7551 |
蛋白溶解梭菌 B. proteoclasticus | 0.0626a | 0.0765a | 0.0615a | 0.0249b | 0.0078 | 0.0116 | 0.7954 | 0.0091 | 0.3952 |
白色瘤胃球菌 R. albus | 0.1538 | 0.1010 | 0.1056 | 0.1147 | 0.0116 | 0.4045 | 0.2108 | 0.6087 | 0.9200 |
黄色瘤胃球菌 R. flavefaciens | 2.2913a | 1.6674b | 1.7626b | 2.4301a | 0.1162 | 0.0124 | 0.0009 | 0.0005 | 0.0257 |
解脂厌氧弧杆菌 A. lipolytica | 0.0123c | 0.0462b | 0.0309a | 0.0301a | 0.0042 | 0.0066 | <0.0001 | 0.0396 | 0.2230 |
埃式巨型球菌 M. elsdenii (×10-3) | 0.1367 | 0.1433 | 0.1600 | 0.1667 | 0.0052 | 0.2605 | 0.5790 | 0.0977 | 0.3981 |
Table 4 Effects of dietary concentrate level and Cr-Met supplementation on the DNA abundance of selected rumen bacterial (% of total bacteria)
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
硬脂酸溶纤维丁酸弧菌 Butyrivibrio SA | 0.2677a | 0.4199a | 0.1447b | 0.1138b | 0.0228 | 0.0019 | 0.9064 | 0.0028 | 0.1509 |
反式油酸溶纤维丁酸弧菌 Butyrivibrio VA | 0.2652a | 0.1132b | 0.0898bc | 0.0736c | 0.0240 | 0.0003 | 0.0004 | 0.0222 | 0.7551 |
蛋白溶解梭菌 B. proteoclasticus | 0.0626a | 0.0765a | 0.0615a | 0.0249b | 0.0078 | 0.0116 | 0.7954 | 0.0091 | 0.3952 |
白色瘤胃球菌 R. albus | 0.1538 | 0.1010 | 0.1056 | 0.1147 | 0.0116 | 0.4045 | 0.2108 | 0.6087 | 0.9200 |
黄色瘤胃球菌 R. flavefaciens | 2.2913a | 1.6674b | 1.7626b | 2.4301a | 0.1162 | 0.0124 | 0.0009 | 0.0005 | 0.0257 |
解脂厌氧弧杆菌 A. lipolytica | 0.0123c | 0.0462b | 0.0309a | 0.0301a | 0.0042 | 0.0066 | <0.0001 | 0.0396 | 0.2230 |
埃式巨型球菌 M. elsdenii (×10-3) | 0.1367 | 0.1433 | 0.1600 | 0.1667 | 0.0052 | 0.2605 | 0.5790 | 0.0977 | 0.3981 |
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
C18:0 | 23990.16b | 24825.01a | 24710.16a | 24530.07ab | 115.16 | 0.0352 | 0.0172 | 0.6803 | 0.3331 |
C18:1 | 2032.01a | 1750.91c | 1815.75b | 1872.88b | 26.85 | <0.0001 | 0.0002 | 0.0072 | 0.9080 |
t6/8 C18:1 | 18.38b | 16.59b | 17.46b | 22.09a | 0.65 | 0.0045 | 0.2032 | 0.0018 | 0.1402 |
t9 C18:1 | 41.82a | 28.95b | 34.53ab | 40.05a | 1.58 | 0.0053 | 0.0019 | 0.0097 | 0.9928 |
t10 C18:1 | 0.33 | 0.32 | 0.33 | 0.33 | 0.00 | 0.7237 | 0.4458 | 0.3031 | 0.9308 |
t11 C18:1 | 628.16a | 402.09c | 442.44b | 462.07b | 21.52 | <0.0001 | <0.0001 | 0.0211 | 0.6063 |
t12 C18:1 | 0.14 | 0.14 | 0.15 | 0.13 | 0.00 | 0.5626 | 0.4609 | 0.6923 | 0.2646 |
trans C18:1 | 688.83a | 448.09c | 494.90bc | 524.67b | 22.52 | <0.0001 | <0.0001 | 0.0420 | 0.6588 |
c9 C18:1 | 807.30 | 772.81 | 790.94 | 808.31 | 8.73 | 0.4624 | 0.0918 | 0.2306 | 0.9880 |
c9t11 CLA | 41.40a | 34.37b | 34.80b | 36.73b | 0.95 | 0.0194 | 0.0018 | 0.3520 | 0.7312 |
t10c12 CLA | 28.22a | 23.58b | 25.42ab | 26.01ab | 0.73 | 0.1550 | 0.0305 | 0.2527 | 0.7297 |
C18:2 t9c11 | 3.66 | 3.34 | 3.56 | 3.72 | 0.12 | 0.6934 | 0.3025 | 0.3339 | 0.9252 |
C18:2 c10t12 | 1.75 | 1.61 | 1.58 | 1.60 | 0.07 | 0.8440 | 0.5684 | 0.9581 | 0.9035 |
C18:2n6 | 6.77a | 5.34b | 5.66b | 6.14ab | 0.21 | 0.0167 | 0.0056 | 0.1376 | 0.8381 |
C18:3n3 | 0.28a | 0.26b | 0.26b | 0.26b | 0.00 | 0.0004 | 0.0039 | 0.5098 | 0.7018 |
Table 5 Effects of dietary concentrate level and Cr-Met supplementation on fatty acid composition of rumen fluid (mg·kg-1)
项目 Items | LC | HC | HCM | HCH | SEM | P | |||
---|---|---|---|---|---|---|---|---|---|
ANOVA | LC vs HC | L | Q | ||||||
C18:0 | 23990.16b | 24825.01a | 24710.16a | 24530.07ab | 115.16 | 0.0352 | 0.0172 | 0.6803 | 0.3331 |
C18:1 | 2032.01a | 1750.91c | 1815.75b | 1872.88b | 26.85 | <0.0001 | 0.0002 | 0.0072 | 0.9080 |
t6/8 C18:1 | 18.38b | 16.59b | 17.46b | 22.09a | 0.65 | 0.0045 | 0.2032 | 0.0018 | 0.1402 |
t9 C18:1 | 41.82a | 28.95b | 34.53ab | 40.05a | 1.58 | 0.0053 | 0.0019 | 0.0097 | 0.9928 |
t10 C18:1 | 0.33 | 0.32 | 0.33 | 0.33 | 0.00 | 0.7237 | 0.4458 | 0.3031 | 0.9308 |
t11 C18:1 | 628.16a | 402.09c | 442.44b | 462.07b | 21.52 | <0.0001 | <0.0001 | 0.0211 | 0.6063 |
t12 C18:1 | 0.14 | 0.14 | 0.15 | 0.13 | 0.00 | 0.5626 | 0.4609 | 0.6923 | 0.2646 |
trans C18:1 | 688.83a | 448.09c | 494.90bc | 524.67b | 22.52 | <0.0001 | <0.0001 | 0.0420 | 0.6588 |
c9 C18:1 | 807.30 | 772.81 | 790.94 | 808.31 | 8.73 | 0.4624 | 0.0918 | 0.2306 | 0.9880 |
c9t11 CLA | 41.40a | 34.37b | 34.80b | 36.73b | 0.95 | 0.0194 | 0.0018 | 0.3520 | 0.7312 |
t10c12 CLA | 28.22a | 23.58b | 25.42ab | 26.01ab | 0.73 | 0.1550 | 0.0305 | 0.2527 | 0.7297 |
C18:2 t9c11 | 3.66 | 3.34 | 3.56 | 3.72 | 0.12 | 0.6934 | 0.3025 | 0.3339 | 0.9252 |
C18:2 c10t12 | 1.75 | 1.61 | 1.58 | 1.60 | 0.07 | 0.8440 | 0.5684 | 0.9581 | 0.9035 |
C18:2n6 | 6.77a | 5.34b | 5.66b | 6.14ab | 0.21 | 0.0167 | 0.0056 | 0.1376 | 0.8381 |
C18:3n3 | 0.28a | 0.26b | 0.26b | 0.26b | 0.00 | 0.0004 | 0.0039 | 0.5098 | 0.7018 |
1 | Serra A, Mele M, La Comba F, et al. Conjugated linoleic acid (CLA) content of meat from three muscles of Massese suckling lambs slaughtered at different weights. Meat Science, 2009, 81(2): 396-404. |
2 | Schmid A, Collomb M, Sieber R, et al. Conjugated linoleic acid in meat and meat products: A review. Meat Science, 2006, 73(1): 29-41. |
3 | Gudla P, Abughazaleh A A, Ishlak A, et al. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Animal Feed Science and Technology, 2012, 171(2/3/4): 108-116. |
4 | Fuentes M C, Calsamiglia S, Cardozo P W, et al. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Journal of Dairy Science, 2009, 92(9): 4456-4466. |
5 | Majdoub-Mathlouthi L, Saïd B, Say A, et al. Effect of concentrate level and slaughter body weight on growth performances, carcass traits and meat quality of Barbarine lambs fed oat hay based diet. Meat Science, 2013, 93(3): 557-563. |
6 | Fruet A P, Stefanello F S, Rosado Junior A G, et al. Whole grains in the finishing of culled ewes in pasture or feedlot: Performance, carcass characteristics and meat quality. Meat Science, 2016, 113: 97-103. |
7 | Wang Y, Xu L, Liu J, et al. A high grain diet dynamically dhifted the composition of mucosa-associated microbiota and induced mucosal injuries in the colon of cheep. Frontiers in Microbiology, 2017, 8: 2080. |
8 | Xu L, Wang Y, Liu J, et al. Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. Journal of Animal Science and Biotechnology, 2018, 9: 32. |
9 | Zhang J, Shi H, Wang Y, et al. Effect of dietary forage to foncentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Frontiers in Microbiology, 2017, 8: 2206. |
10 | Plaizier J C, Li S, Danscher A M, et al. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology, 2017, 74(2): 485-495. |
11 | Tian Y Y, Gong L M, Xue J X, et al. Effects of graded levels of chromium methionine on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. Biological Trace Element Research, 2015, 168(1): 110-421. |
12 | Gaebel G, Martens H, Suendermann M, et al. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo‐rumen of sheep. Quarterly Journal of Experimental Physiology, 1987, 72: 501-511. |
13 | Lashkari S, Habibian M, Jensen S K. A review on the role of chromium supplementation in ruminant nutrition-effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biological Trace Element Research, 2018, 186(2): 305-321. |
14 | Dallago B S, Mcmanus C M, Caldeira D F, et al. Performance and ruminal protozoa in lambs with chromium supplementation. Research in Veterinary Science, 2011, 90(2): 253-256. |
15 | Salamon R V, Vargáné-Visi É, András C D, et al. Synthetic methods to obtain conjugated linoleic acids (CLAs) by catalysis -A review. Acta Alimentaria, 2015, 44(2): 229-234. |
16 | Prem K J, Tv R. Current knowledge on source and synthesis of conjugated linoleic acid (CLA): A review. Advances in Biotechnology & Microbiology, 2017, 7(2): 8. |
17 | Wang J Q, Lu D X, Yang H J, et al. Feeding standard of mutton sheep NY/T 816-2004. Beijing: China Agriculture Press, 2004. |
王加启, 卢德勋, 杨红建, 等. 肉羊饲养标准NY/T 816-2004. 北京: 中国农业出版社, 2004. | |
18 | Wang J Q. Methods in ruminant nutrition research. Beijing: Modern Education Press, 2011. |
王加启. 反刍动物营养学研究方法. 北京: 现代教育出版社, 2011. | |
19 | Wu X D. Effects of flax seed cake instead of soybean meal on growth performance, blood biochemical indicators, rumen fermentation of sheep. Taiyuan: Shanxi Agricultural University, 2017. |
武晓东. 胡麻饼代替豆粕对肉羊生产性能、血液指标、瘤胃发酵性能的研究. 太原: 山西农业大学, 2017. | |
20 | Makkar H P S, Sharma O P, Dawra R K, et al. Simple determination of microbial protein in rumen liquor. Journal of Dairy Science, 1982, 65(11): 2170-2173. |
21 | Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2009, 83(5): 987-998. |
22 | Zhang Y Y, Wang C, Liu Q, et al. Effects of different roughage to concentrate ratios on ruminal fermentation characteristics, nutrients digestion and metabolism of Jinnan cattle. Chinese Journal of Animal Nutrition, 2014, 26(8): 2365-2372. |
张莹莹, 王聪, 刘强, 等. 不同精粗比饲粮对晋南牛瘤胃发酵特性和养分消化代谢的影响. 动物营养学报, 2014, 26(8): 2365-2372. | |
23 | Polyorach S, Wanapat M, Cherdthong A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 36-45. |
24 | Wang C, Liu Q, Guo G, et al. Effects of concentrate- to- forage ratios and 2-methylbutyrate supplementation on ruminal fermentation, bacteria abundance and urinary excretion of purine derivatives in Chinese Simmental steers. Journal of Animal Physiology and Animal Nutrition, 2018, 102(4): 901-909. |
25 | Kljak K, Pino F, Heinrichs A J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. Journal of Dairy Science, 2017, 100(1): 213-223. |
26 | Fuentes M C, Calsamiglia S, Fievez V, et al. Effect of pH on ruminal fermentation and biohydrogenation of diets rich in omega-3 or omega-6 fatty acids in continuous culture of ruminal fluid. Animal Feed Science and Technology, 2011, 169(1/2): 35-45. |
27 | Ishlak A, Günal M, Abughazaleh A A. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Animal Feed Science and Technology, 2015, 207: 31-40. |
28 | Jenkins T C, Wallace R J, Moate P J, et al. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 2008, 86(2): 397-412. |
29 | Latham M J, Storry J E, Sharpe M E. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied Microbiology, 1972, 24(6): 871-877. |
30 | Paillard D, Mckain N, Rincon M T, et al. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. Journal of Applied Microbiology, 2007, 103(4): 1251-1261. |
31 | Hobson P N. Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. Journal of General Microbiology, 1965, 38(2): 167-180. |
32 | Mackie R I, Gilchrist F M C, Robberts A M, et al. Mircobiological and chemical changes in the rumen during the stepwise adaptation of sheep to high-concentrate diets. Journal of Agricultural Science, 1978, 90: 241-254. |
33 | Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the pumen pevealed with real-time PCR. Applied and Environmental Microbiology, 2001, 67(6): 2766-2774. |
34 | Verhulst A, Janssen G, Parmentier G, et al. Isomerization of polyunsaturated long chain fatty acids by propionibacteria. Systematic and Applied Microbiology, 1987, 9(1/2): 12-15. |
35 | Troegeler-Meynadier A, Palagiano C, Enjalbert F. Effects of pH and fermentative substrate on ruminal metabolism of fatty acids during short-term in vitro incubation. Journal of Animal Physiology Animal Nutrition, 2013, 98(4): 704-713. |
36 | Prins R A, Lankhorst A, Meer P V D, et al. Some characteristics of anaerovibrio lipolytica a rumen lipolytic organism. Antonie van Leeuwenhoek, 1975, 41: 1-11. |
37 | Kalscheur K F, Teter B B, Piperova L S, et al. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy science, 1997, 80(9): 2104-2114. |
38 | Wallace J R, Chaudhary L C, Mckain N, et al. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiology Letters, 2006, 265(2): 195-201. |
39 | Mckain N, Shingfield K J, Wallace R J. Metabolism of conjugated linoleic acids and 18:1 fatty acids by ruminal bacteria: Products and mechanisms. Microbiology, 2010, 156(2): 579-588. |
40 | Abughazaleh A, Jacobson B N. Production of trans C18:1 and conjugated linoleic acid in continuous culture fermenters fed diets containing fish oil and sunflower oil with decreasing levels of forage. Animal, 2007, 1(5): 660-665. |
41 | Maczulak A E, Dehority B A, Palmquist D L. Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology, 1981, 42(5): 856-862. |
42 | Wallace R J, Mckain N, Shingfield K J, et al. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. Journal of Lipid Research, 2007, 48(10): 2247-2254. |
43 | Kim Y J, Liu R H, Rychlik J L, et al. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. Journal of Applied Microbiology, 2002, 92(5): 976-982. |
44 | Klieve A V, Hennessy D, Ouwerkerk D, et al. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. Journal of Applied Microbiology, 2003, 95(3): 621-630. |
45 | Maia M R, Chaudhary L C, Figueres L, et al. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 2007, 91(4): 303-314. |
[1] | Xun-gang WANG, Xiao-ling ZHANG, Tian-wei XU, Yuan-yue GENG, Lin-yong HU, Na ZHAO, Hong-jin LIU, Sheng-ping KANG, Shi-xiao XU. Effects of dietary protein levels on ruminal fungal community structure and function in Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(2): 182-191. |
[2] | Jiang-wei LI, Zhi-you WANG, Sheng-zhen HOU, Yun LEI, Jian-lei JIA, Li ZHOU, Lin-sheng GUI. Effects of dietary concentrate∶roughage ratio on rumen morphology and microbial flora in fattening Tibetan sheep [J]. Acta Prataculturae Sinica, 2021, 30(3): 100-109. |
[3] | Ji-qing WANG, Ji-yuan SHEN, Xiu LIU, Shao-bin LI, Yu-zhu LUO, Meng-li ZHAO, Zhi-yun HAO, Na KE, Yi-ze SONG, Li-rong QIAO. Comparative analysis of meat production traits, meat quality, and muscle nutrient and fatty acid contents between Ziwuling black goats and Liaoning cashmere goats [J]. Acta Prataculturae Sinica, 2021, 30(2): 166-177. |
[4] | Shuang WU, Yu-xiang ZHOU, Rou JIA, Ya-dong JIN, Wan-zong YANG. Effects of cellulase treatment of buckwheat straw on fiber structure and meat quality of Tan sheep [J]. Acta Prataculturae Sinica, 2021, 30(1): 170-180. |
[5] | WANG Yu-ping, GAO Chun-xiao, WANG Sheng-xiang, HE Xiao-tong. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress [J]. Acta Prataculturae Sinica, 2020, 29(8): 116-125. |
[6] | JIAO Ting, WU Tie-cheng, WU Jian-ping, ZHAO Sheng-guo, LEI Zhao-min, LIANG Jian-yong, RAN Fu, JIU MAI Zha-xi, LIU Zhen-heng. A comparative study on digestibility and feed intake of Tibetan sheep of different types [J]. Acta Prataculturae Sinica, 2019, 28(5): 100-108. |
[7] | KANG Jing-peng, WANG Wen-ji, GUO Ya-min, JING Xiao-ping, ZHONG Chong-liang, GUO Wei, LONG Rui-jun, ZHOU Jian-wei. Effects of different dietary energy levels on apparent digestibility, nitrogen metabolism and growth performance of Tibetan sheep under low nitrogen conditions [J]. Acta Prataculturae Sinica, 2018, 27(9): 166-174. |
[8] | XIAO Hong, XU Chang-Lin, ZHANG De-Gang, ZHANG Jian-Wen, YANG Hai-Lei, CHAI Jin-Long, PAN Tao-Tao, WANG Yan, YU Xiao-Jun. Short-term photosynthetic responses of Medicago ruthenia var. inschanicus to simulated yak and Tibetan sheep trampling and rainfall [J]. Acta Prataculturae Sinica, 2017, 26(2): 43-52. |
[9] | JIN Yan-Mei, ZHANG Xiao-Qing, WANG Chong, LI Mei, WANG Yi, YAN Qin. Effects of grazing duration on polyunsaturated fatty acid deposition and oxidative stability of lamb meat [J]. Acta Prataculturae Sinica, 2016, 25(7): 104-111. |
[10] | LI Qiu-feng, XU Lei-lei, LI Jian-guo, CAO Yu-feng, ZHANG Wen-hua. Effects of flax seed on beef quality and fatty acids in fattening cattle [J]. Acta Prataculturae Sinica, 2013, 22(5): 272-279. |
[11] |
WANG Jian-ping, WANG Jia-qi, BU Deng-pan.
Effect of supplemental saturated fatty acids on blood CO2, ions concentration and cation-anion balance of mid-lactating dairy cows during heat stress [J]. Acta Prataculturae Sinica, 2013, 22(3): 314-. |
[12] | ZHUANG Su, DING Li-ren, ZHOU Jian-guo, WANG Tian. Effects of exogenous fibrolytic enzymes on the enzyme activities and fermentation characteristic of Chinese wildrye by mixed ruminal microorganisms in vitro [J]. Acta Prataculturae Sinica, 2013, 22(1): 315-322. |
[13] | MAO Sheng-yong, HE Wen-bo, ZHU Wei-yun. Effect of acarbose addition on acute and subacute rumen acidosis in an in vitro fermentation study [J]. Acta Prataculturae Sinica, 2012, 21(6): 130-136. |
[14] | DAN Rui-fang, ZHANG Hai-tao, LONG Rui-jun, DING Xue-zhi, ZHANG Xin. Seasonal shift of rumen bacteria quantity of grazing Tibetan sheep and forage nutrition by grazing sheep [J]. Acta Prataculturae Sinica, 2009, 18(1): 100-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||