Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (2): 76-87.DOI: 10.11686/cyxb2020530
Previous Articles Next Articles
Chun-jiao YANG(), Yu-zhen HAN, Zhong-kui LI, Da-cai ZHANG(), Hong-bin WANG, Hong-lin LI
Received:
2020-12-01
Revised:
2021-04-06
Online:
2022-02-20
Published:
2021-12-22
Contact:
Da-cai ZHANG
Chun-jiao YANG, Yu-zhen HAN, Zhong-kui LI, Da-cai ZHANG, Hong-bin WANG, Hong-lin LI. Responses of root vessel anatomical structures to drought exposure for two Kobresia species in an alpine meadow habitat in Southeast Tibet[J]. Acta Prataculturae Sinica, 2022, 31(2): 76-87.
样方编号 No. of sample | 土壤含水率 Soil water content (%) | 海拔 Altitude (m) | 地形 Landform | 地理坐标 Longitude and latitude | 优势种 Dominant species |
---|---|---|---|---|---|
S1 | 22.4 | 4803 | 陡坡Steep slope | 29°71′94″ N, 98°04′53″ E | 矮生嵩草 K. humilis |
S2 | 30.3 | 4773 | 陡坡Steep slope | 29°72′61″ N, 98°04′51″ E | 矮生嵩草 K. humilis |
S3 | 37.6 | 4766 | 陡坡Steep slope | 29°71′08″ N, 98°04′48″ E | 矮生嵩草 K. humilis |
S4 | 42.9 | 4762 | 缓坡Gentle slope | 29°71′58″ N, 98°04′24″ E | 矮生嵩草 K. humilis |
S5 | 49.9 | 4759 | 平坦Flat | 29°72′95″ N, 98°04′08″ E | 矮生嵩草 K. humilis 大花嵩草 K. macrantha |
S6 | 58.7 | 4758 | 溪边By the stream | 29°72′81″ N, 98°04′37″ E | 大花嵩草 K. macrantha |
Table 1 Information of sample plots
样方编号 No. of sample | 土壤含水率 Soil water content (%) | 海拔 Altitude (m) | 地形 Landform | 地理坐标 Longitude and latitude | 优势种 Dominant species |
---|---|---|---|---|---|
S1 | 22.4 | 4803 | 陡坡Steep slope | 29°71′94″ N, 98°04′53″ E | 矮生嵩草 K. humilis |
S2 | 30.3 | 4773 | 陡坡Steep slope | 29°72′61″ N, 98°04′51″ E | 矮生嵩草 K. humilis |
S3 | 37.6 | 4766 | 陡坡Steep slope | 29°71′08″ N, 98°04′48″ E | 矮生嵩草 K. humilis |
S4 | 42.9 | 4762 | 缓坡Gentle slope | 29°71′58″ N, 98°04′24″ E | 矮生嵩草 K. humilis |
S5 | 49.9 | 4759 | 平坦Flat | 29°72′95″ N, 98°04′08″ E | 矮生嵩草 K. humilis 大花嵩草 K. macrantha |
S6 | 58.7 | 4758 | 溪边By the stream | 29°72′81″ N, 98°04′37″ E | 大花嵩草 K. macrantha |
水分梯度 Water gradient | 土壤含水率 Soil water content(%) | 各实验对象及重复的样本量Sample sizes of each subjects and replicates | 合计样本量 Total sample size | |||||
---|---|---|---|---|---|---|---|---|
矮生嵩草K. humilis | 大花嵩草K. macrantha | |||||||
1 | 2 | 3 | 1 | 2 | 3 | |||
1 | 22.4 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
2 | 30.3 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
3 | 37.6 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
4 | 42.9 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
5 | 49.9 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
6 | 58.7 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
Table 2 Design of experiment
水分梯度 Water gradient | 土壤含水率 Soil water content(%) | 各实验对象及重复的样本量Sample sizes of each subjects and replicates | 合计样本量 Total sample size | |||||
---|---|---|---|---|---|---|---|---|
矮生嵩草K. humilis | 大花嵩草K. macrantha | |||||||
1 | 2 | 3 | 1 | 2 | 3 | |||
1 | 22.4 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
2 | 30.3 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
3 | 37.6 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
4 | 42.9 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
5 | 49.9 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
6 | 58.7 | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
指标 Indices | 单位 Unit | 测量与计算方法 Methods of measurement and calculation | 每个生境数据量 Date volume per habitat | 总数据量 Total data |
---|---|---|---|---|
管腔面积 Lumen area (s) | μm2 | 测量根横切面上每个导管的内腔面积。The lumen area of each vessel was measured. | 公式1 Formula 1 | 1055 |
导管平均直径 Average diameter of vessel ( | μm | 测量每个导管互相垂直方向上的两组直径(d1, d2),以平均值作为每个导管的直径。Two groups of diameters(d1, d2) of each vessel perpendicular to each other were measured, and the average value was calculated as the diameter of each vessel. | 公式1 Formula 1 | 1055 |
水力直径 Hydraulic diameter (dh) | μm | 同一条根所有导管计算1个水力直径,n代表每条根中导管数量,计算方法见 | 15 | 90 |
管壁厚度 Wall thickness (th) | μm | 每个导管随机测两组壁厚(th1, th2),以平均值作为该导管的管壁厚度。 The wall thickness(th1, th2) of each catheter was measured randomly, and the average value was calculated as the wall thickness of the vessel. | 公式1 Formula 1 | 1055 |
加固系数 Coefficient reinforcement (cwr) | 公式1 Formula 1 | 1055 | ||
导管密度 Vessel density (p) | n·mm-2 | 测量根横切面面积(a),计数根横切面上所有导管个数(n),根据 | 15 | 90 |
Table 3 Measurement method and data quantity of vessel structures variables
指标 Indices | 单位 Unit | 测量与计算方法 Methods of measurement and calculation | 每个生境数据量 Date volume per habitat | 总数据量 Total data |
---|---|---|---|---|
管腔面积 Lumen area (s) | μm2 | 测量根横切面上每个导管的内腔面积。The lumen area of each vessel was measured. | 公式1 Formula 1 | 1055 |
导管平均直径 Average diameter of vessel ( | μm | 测量每个导管互相垂直方向上的两组直径(d1, d2),以平均值作为每个导管的直径。Two groups of diameters(d1, d2) of each vessel perpendicular to each other were measured, and the average value was calculated as the diameter of each vessel. | 公式1 Formula 1 | 1055 |
水力直径 Hydraulic diameter (dh) | μm | 同一条根所有导管计算1个水力直径,n代表每条根中导管数量,计算方法见 | 15 | 90 |
管壁厚度 Wall thickness (th) | μm | 每个导管随机测两组壁厚(th1, th2),以平均值作为该导管的管壁厚度。 The wall thickness(th1, th2) of each catheter was measured randomly, and the average value was calculated as the wall thickness of the vessel. | 公式1 Formula 1 | 1055 |
加固系数 Coefficient reinforcement (cwr) | 公式1 Formula 1 | 1055 | ||
导管密度 Vessel density (p) | n·mm-2 | 测量根横切面面积(a),计数根横切面上所有导管个数(n),根据 | 15 | 90 |
指标 Indices | 相关系数 Correlation coefficient (R) | |||
---|---|---|---|---|
矮生嵩草K. humilis | 大花嵩草K. macrantha | |||
土壤含水率Soil water content | 盖度Coverage | 土壤含水率Soil water content | 盖度Coverage | |
管壁厚度 Wall thickness | -0.131** | -0.218** | -0.185** | -0.170** |
加固系数 Coefficient reinforcement | -0.038 | -0.082** | -0.333** | -0.387** |
导管密度 Vessel density | 0.386** | 0.339** | -0.194 | -0.167 |
管腔面积 Lumen area | -0.053 | -0.061* | 0.162** | 0.167** |
导管平均直径 Average diameter | -0.053 | -0.051 | 0.180** | 0.208** |
水力直径 Hydraulic diameter | -0.008 | 0.021 | 0.153 | 0.174 |
Table 4 Correlation between root vessel structure and community coverage or soil water content for two Kobresia species
指标 Indices | 相关系数 Correlation coefficient (R) | |||
---|---|---|---|---|
矮生嵩草K. humilis | 大花嵩草K. macrantha | |||
土壤含水率Soil water content | 盖度Coverage | 土壤含水率Soil water content | 盖度Coverage | |
管壁厚度 Wall thickness | -0.131** | -0.218** | -0.185** | -0.170** |
加固系数 Coefficient reinforcement | -0.038 | -0.082** | -0.333** | -0.387** |
导管密度 Vessel density | 0.386** | 0.339** | -0.194 | -0.167 |
管腔面积 Lumen area | -0.053 | -0.061* | 0.162** | 0.167** |
导管平均直径 Average diameter | -0.053 | -0.051 | 0.180** | 0.208** |
水力直径 Hydraulic diameter | -0.008 | 0.021 | 0.153 | 0.174 |
指标 Indices | 矮生嵩草 K. humilis | 大花嵩草 K. macrantha | |||||||
---|---|---|---|---|---|---|---|---|---|
因子载荷 Factor loading | F | 排序 Rank | 因子载荷 Factor loading | F | 排序 Rank | ||||
F1 | F2 | F1 | F2 | F3 | |||||
管腔面积Lumen area | -0.566 | 0.796 | -0.144 | 5 | 0.958 | -0.019 | -0.063 | 0.396 | 3 |
导管平均直径 Average diameter | 0.336 | 0.920 | 0.517 | 4 | 0.982 | 0.028 | 0.004 | 0.438 | 1 |
水力直径 Hydraulic diameter | -0.357 | 0.010 | -0.243 | 6 | -0.054 | -0.072 | -0.805 | -0.250 | 6 |
管壁厚度 Wall thickness | 0.986 | -0.022 | 0.674 | 2 | 0.306 | 0.933 | 0.051 | 0.437 | 2 |
加固系数 Coefficient reinforcement | 0.903 | 0.059 | 0.642 | 3 | -0.492 | 0.846 | 0.036 | 0.058 | 5 |
导管密度 Vessel density | 0.981 | 0.022 | 0.684 | 1 | -0.102 | -0.009 | 0.801 | 0.156 | 4 |
特征值 Characteristic value | 3.31 | 1.49 | 2.23 | 1.59 | 1.30 | ||||
方差贡献率 Variance contribution rate (%) | 55.17 | 24.76 | 37.18 | 26.56 | 21.61 | ||||
累计贡献率 Cumulative contribution rate (%) | 55.17 | 79.93 | 37.18 | 63.73 | 85.35 |
Table 5 Eigenvectors and contribution rates of principal components in vessel structures of K. humilis and K. macrantha
指标 Indices | 矮生嵩草 K. humilis | 大花嵩草 K. macrantha | |||||||
---|---|---|---|---|---|---|---|---|---|
因子载荷 Factor loading | F | 排序 Rank | 因子载荷 Factor loading | F | 排序 Rank | ||||
F1 | F2 | F1 | F2 | F3 | |||||
管腔面积Lumen area | -0.566 | 0.796 | -0.144 | 5 | 0.958 | -0.019 | -0.063 | 0.396 | 3 |
导管平均直径 Average diameter | 0.336 | 0.920 | 0.517 | 4 | 0.982 | 0.028 | 0.004 | 0.438 | 1 |
水力直径 Hydraulic diameter | -0.357 | 0.010 | -0.243 | 6 | -0.054 | -0.072 | -0.805 | -0.250 | 6 |
管壁厚度 Wall thickness | 0.986 | -0.022 | 0.674 | 2 | 0.306 | 0.933 | 0.051 | 0.437 | 2 |
加固系数 Coefficient reinforcement | 0.903 | 0.059 | 0.642 | 3 | -0.492 | 0.846 | 0.036 | 0.058 | 5 |
导管密度 Vessel density | 0.981 | 0.022 | 0.684 | 1 | -0.102 | -0.009 | 0.801 | 0.156 | 4 |
特征值 Characteristic value | 3.31 | 1.49 | 2.23 | 1.59 | 1.30 | ||||
方差贡献率 Variance contribution rate (%) | 55.17 | 24.76 | 37.18 | 26.56 | 21.61 | ||||
累计贡献率 Cumulative contribution rate (%) | 55.17 | 79.93 | 37.18 | 63.73 | 85.35 |
1 | Guo X M, Xiao X, Xu X Y, et al. Observation on the vessel elements of secondary xylem in late-ripening peach trees. Journal of Fruit Science, 2008, 25(1): 22-26. |
郭学民, 肖啸, 徐兴友, 等. 21世纪桃树次生木质部导管分子特征的观察. 果树学报, 2008, 25(1): 22-26. | |
2 | Shen Q D. A study on xylem anatomy and drought resistance mechanism of different mulberry varieties. Zhenjiang: Jiangsu University of Science and Technology, 2019. |
沈萩荻. 不同品种桑树木质部解剖特征及抗旱机理的研究. 镇江: 江苏科技大学, 2019. | |
3 | Lv L X. Relationships between vulnerability to xylem embolism and soil moisture in poplar cuttings. Xianyang: Northwest Agriculture & Forestry University, 2015. |
吕琳雪. 杨树木质部栓塞脆弱性与土壤水分的关系. 咸阳: 西北农林科技大学, 2015. | |
4 | Zhou H H, Li W H, Ayup M, et al. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress. Chinese Journal of Plant Ecology, 2012, 36(1): 19-29. |
周洪华, 李卫红, 木巴热克·阿尤普, 等. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应. 植物生态学报, 2012, 36(1): 19-29. | |
5 | Chen Q. Hydrodynamics modeling and flow resistance characteristics of tissue structure of plant vessel and trachied. Hangzhou: Zhejiang University of Technology, 2016. |
陈琦. 植物木质部导管与管胞微结构流场建模与流阻特性研究. 杭州: 浙江工业大学, 2016. | |
6 | Zhu G L, Chen X B, Ahmad I, et al. Mechanism of plasticity of root vessel structure of Ziziphus jujuba var. spinosa adapting ecotopes along a natural drought gradient. Acta Pedologica Sinica, 2018, 55(3): 764-773. |
朱广龙, 陈许兵, Ahmad Irshad, 等. 酸枣根系导管结构的可塑性对自然梯度干旱生境的适应机制. 土壤学报, 2018, 55(3): 764-773. | |
7 | Liu G Z, Liu G H, Lan Q, et al. Comparative study on morphological characteristics and ecological adaptability of vessel elements of Salix gordejevii and S. microstachya var. bordensis. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 316-322. |
刘冠志, 刘果厚, 兰庆, 等. 黄柳与小红柳导管分子形态特征及其生态适应性比较研究. 西北植物学报, 2016, 36(2): 316-322. | |
8 | Helga L. Wood and leaf anatomy in Sessea corymbiflora from an ecological perspective. Iawa Journal, 1997, 18(2): 157-168. |
9 | Ding J J, Zhang X, Chu G M, et al. Vessel characteristics and their plasticity in three desert plants. Journal of Arid Land Resources and Environment, 2016, 30(9): 171-177. |
丁俊杰, 张鑫, 楚光明, 等. 三种荒漠植物导管特征及其可塑性研究. 干旱区资源与环境, 2016, 30(9): 171-177. | |
10 | Ou Q M, Ni J F, Ma R J. Relation between roots xylem pipe and drought-resistance in spring wheat. Journal of Triticeae Crops, 2005, 25(3): 27-31. |
欧巧明, 倪建福, 马瑞君. 春小麦根系木质部导管与其抗旱性的关系. 麦类作物学报, 2005, 25(3): 27-31. | |
11 | Wang D, Zhang X M, Gan X H, et al. A comparative observation on morphological characteristics of vessel elements in secondary xylem of two plants in Fagus. Chinese Agricultural Science Bulletin, 2016, 32(4): 14-20. |
王东, 张雪梅, 甘小洪, 等. 2种水青冈属植物次生木质部导管分子形态特征比较观察. 中国农学通报, 2016, 32(4): 14-20. | |
12 | Sherwin C. How wood evolves: a new synthesis. Botany, 2012, 90(10): 901-940. |
13 | Wei W, Zhou J J, Baima G W, et al. Study of resource investigation of Kobresia in Tibetan Plateau. Chinese Wild Plant Resources, 2019, 38(3): 80-85. |
魏巍, 周娟娟, 白玛嘎翁, 等. 西藏高原嵩草属植物资源调查研究. 中国野生植物资源, 2019, 38(3): 80-85. | |
14 | Li J L, Li X L. Research progress on environmental adaptability of Kobresia humilis in alpine meadow. Ecological Science, 2016, 35(2): 156-165. |
李积兰, 李希来. 高寒草甸矮嵩草的环境适应性研究进展. 生态科学, 2016, 35(2): 156-165. | |
15 | Jia Z, Jian C X, Xiong P F, et al. Relationship between community coverage and aboveground biomass in farming-withdrawn grassland in loess hilly gully region. Research of Soil and Water Conservation, 2020, 27(1): 319-327. |
贾昭, 简春霞, 熊沛枫, 等. 黄土丘陵区退耕草地群落盖度与地上生物量关系. 水土保持研究, 2020, 27(1): 319-327. | |
16 | Lou Y J, Zhao K Y, Ma K P. Change in floristic composition and species diversity of plant community along environment gradient in Honghe National Nature Reserve, China. Acta Eoologica Sinica, 2007(9): 3883-3891. |
娄彦景, 赵魁义, 马克平. 洪河自然保护区典型湿地植物群落组成及物种多样性梯度变化. 生态学报, 2007(9): 3883-3891. | |
17 | Wu J G, Zhou Q F. Geographical distribution pattern and climate characteristics of adaptation for Kobresia in China. Chinese Journal of Plant Ecology, 2012, 36(3): 199-221. |
吴建国, 周巧富. 中国嵩草属植物地理分布模式和适应的气候特征. 植物生态学报, 2012, 36(3): 199-221. | |
18 | Zhang D C, Zhu Y H, Li S Z. Variation in stomatal characteristics of eight plant species along a soil moisture gradient in alpine meadow of the Dongda Mountains in Southeast Tibet. Acta Prataculturae Sinica, 2018, 27(7): 36-46. |
张大才, 朱玉怀, 李双智. 东达山高寒草甸8种植物气孔特征沿土壤水分梯度的变化. 草业学报, 2018, 27(7): 36-46. | |
19 | Yang C J, Chen D R, Zhang D C. Root morphology and distribution characteristics of plants in different habitats of alpine meadow in Southeast Tibet. Chinese Journal of Grassland, 2020, 42(4): 79-84. |
杨春娇, 陈玳汝, 张大才. 藏东南高寒草甸不同生境植物根系形态及分布特征. 中国草地学报, 2020, 42(4): 79-84. | |
20 | Zhang X S. The microscopic observation and biological production technology. Beijing: China Water & Power Press, 2012. |
张学舒. 显微观察与生物制片技术. 北京: 中国水利水电出版社, 2012. | |
21 | Hacke U G, Sperry J S, Feild T S, et al. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. International Journal of Plant Sciences, 2007, 168(8): 1113-1126. |
22 | Wu J. SPSS statistical analysis from scratch. Beijing: Tsinghua University Press, 2014. |
吴骏. SPSS统计分析从零开始学. 北京: 清华大学出版社, 2014. | |
23 | Li J H, Zhou M, Zhu J Y, et al. Adaptability response of root architecture of Cotinus coggygria seedings to soil nutrient stress. Journal of Beijing Forestry University, 2020, 42(3): 65-77. |
李金航, 周玫, 朱济友, 等. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报, 2020, 42(3): 65-77. | |
24 | Li G X, Zheng B J. Comparative study on morphological characteristics and ecological adaptability of vessel elements of ten Ribes L.varieties. Bulletin of Botanical Research, 2014, 34(1): 25-31. |
李国秀, 郑宝江. 10种茶藨子属植物导管分子形态特征及其生态适应性比较研究. 植物研究, 2014, 34(1): 25-31. | |
25 | Gu L W, Liu S H, Zhang D W. Morphology structure of vessel element of Spiraea in Heilongjiang Province. Journal of Chinese Electron Microscopy Society, 2015, 34(1): 71-77. |
谷利伟, 刘树焕, 张大维. 黑龙江绣线菊属15种植物导管分子形态结构研究. 电子显微学报, 2015, 34(1): 71-77. | |
26 | Jordan G J, Brodribb T J, Blackman C J, et al. Climate drives vein anatomy in Proteaceae. American Journal of Botany, 2013, 100(8): 1483-1493. |
27 | Zhu G L, Deng R H, Ma Y, et al. Changes in the vessel morphology of Ziziphus jujuba var. spinosa plants in response to natural drought-gradient ecotopes. Acta Ecologica Sinica, 2015, 35(24): 8268-8275. |
朱广龙, 邓荣华, 马茵, 等. 酸枣茎导管对自然梯度干旱生境响应的结构特征. 生态学报, 2015, 35(24): 8268-8275. | |
28 | Xu Q, Chen Y N. Response of anatomy and hydraulic characteristics of xylem stem of Populus euphratica Oliv. to drought stress. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1059-1065. |
徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应. 中国生态农业学报, 2012, 20(8): 1059-1065. | |
29 | Xin G L, Zheng J M, Ye Z Y, et al. Ecological anatomical characteristics of secondary xylem in Kandelia obovata Sheue. Plant Science Journal, 2015, 33(6); 792-800. |
辛桂亮, 郑俊鸣, 叶志勇, 等. 秋茄次生木质部的生态解剖学研究. 植物科学学报, 2015, 33(6): 792-800. | |
30 | Han L J, Lin Y H, Wu S M. The effect of latitudes on the structure of secondary xylem in Liriodendron chinense Sarg. Chinese Bulletin of Botany, 2001, 18(3): 375-377. |
韩丽娟, 林月惠, 吴树明. 不同纬度对鹅掌楸次生木质部结构的影响. 植物学通报, 2001, 18(3): 375-377. | |
31 | Zimmermann M H. Functional xylem anatomy of angiosperm trees. Netherlands: Springer, 1982. |
32 | Zhao X, Dong K H, Zhang Y, et al. Drought resistance and root anatomy of Lespedeza davurica (Laxm.) Schindl. Acta Agrestia Sinica, 2011, 19(1): 13-19. |
赵祥, 董宽虎, 张垚, 等. 达乌里胡枝子根解剖结构与其抗旱性的关系. 草地学报, 2011, 19(1): 13-19. | |
33 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa(Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
34 | Tulik M. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. European Journal of Forest Research, 2014, 133(5): 845-855. |
35 | Li J H, Wang Y Y, Xia J, et al. Responses of root physiological characteristics of different drought-tolerant cotton varieties to drought. Chinese Journal of Applied Ecology, 2020, 31(10): 3453-3460. |
李军宏, 王远远, 夏军, 等. 两个不同耐旱性棉花品种根系生理特性对干旱的响应. 应用生态学报, 2020, 31(10): 3453-3460. | |
36 | Hajek P, Leuschner C, Hertel D, et al. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiology, 2014, 34(7): 744-756. |
37 | Chu G M, Liu N, Niu P X, et al. The anatomy characteristics of xylem vessel of three typical desert plants in Junggar basin. Journal of Arid Land Resources and Environment, 2016, 30(2): 104-109. |
楚光明, 刘娜, 牛攀新, 等. 准噶尔盆地三种荒漠植物木质部导管解剖特征. 干旱区资源与环境, 2016, 30(2): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||