Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 172-184.DOI: 10.11686/cyxb2021425
Meng-yu DONG1(), Jin-xin WANG1, Meng WU1, Zi-yao ZHOU1, Shun CHENG2, Yan-hui LI1()
Received:
2021-11-23
Revised:
2022-02-15
Online:
2022-07-20
Published:
2022-06-01
Contact:
Yan-hui LI
Meng-yu DONG, Jin-xin WANG, Meng WU, Zi-yao ZHOU, Shun CHENG, Yan-hui LI. Leaf structure and photosynthetic characteristics of two species of Hesperis[J]. Acta Prataculturae Sinica, 2022, 31(7): 172-184.
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶片厚度Leaf thickness (LT,μm) | 375.50±6.92a | 373.83±10.71a | 304.92±8.19b |
上表皮厚度Upper epidermal thickness (UET,μm) | 45.70±4.00a | 41.39±3.33a | 35.73±2.17a |
下表皮厚度Lower epidermal thickness (LET,μm) | 30.61±2.11a | 29.20±2.45a | 26.32±3.11a |
栅栏组织厚度Palisade parenchyma thickness (PPT,μm) | 104.00±2.90a | 87.29±3.65b | 98.37±4.40ab |
海绵组织厚度Spongy parenchyma thickness (SPT,μm) | 190.08±1.72b | 208.17±4.33a | 132.99±6.34c |
组织结构紧密度Cell tense ratio (CTR,%) | 27.73±0.94b | 23.37±0.89c | 32.30±1.41a |
组织结构疏松度Spongy ratio (SR,%) | 50.68±1.07b | 55.73±0.67a | 43.56±1.23c |
栅海比PPT/SPT | 0.55±0.01b | 0.42±0.02c | 0.75±0.05a |
维管束直径Vascular bundles diameter (VBD,μm) | 426.51±15.03a | 355.67±16.90b | 390.42±5.45ab |
导管直径Vessel diameter (VD,μm) | 12.20±1.21b | 15.90±0.78a | 8.23±0.41c |
筛管直径Sieve tube diameter (STD,μm) | 6.98±0.32b | 8.74±0.17a | 6.33±0.31b |
Table 1 Comparison of leaf anatomical characteristics of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶片厚度Leaf thickness (LT,μm) | 375.50±6.92a | 373.83±10.71a | 304.92±8.19b |
上表皮厚度Upper epidermal thickness (UET,μm) | 45.70±4.00a | 41.39±3.33a | 35.73±2.17a |
下表皮厚度Lower epidermal thickness (LET,μm) | 30.61±2.11a | 29.20±2.45a | 26.32±3.11a |
栅栏组织厚度Palisade parenchyma thickness (PPT,μm) | 104.00±2.90a | 87.29±3.65b | 98.37±4.40ab |
海绵组织厚度Spongy parenchyma thickness (SPT,μm) | 190.08±1.72b | 208.17±4.33a | 132.99±6.34c |
组织结构紧密度Cell tense ratio (CTR,%) | 27.73±0.94b | 23.37±0.89c | 32.30±1.41a |
组织结构疏松度Spongy ratio (SR,%) | 50.68±1.07b | 55.73±0.67a | 43.56±1.23c |
栅海比PPT/SPT | 0.55±0.01b | 0.42±0.02c | 0.75±0.05a |
维管束直径Vascular bundles diameter (VBD,μm) | 426.51±15.03a | 355.67±16.90b | 390.42±5.45ab |
导管直径Vessel diameter (VD,μm) | 12.20±1.21b | 15.90±0.78a | 8.23±0.41c |
筛管直径Sieve tube diameter (STD,μm) | 6.98±0.32b | 8.74±0.17a | 6.33±0.31b |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶绿素a Chlorophyll a (Chl a, mg·g-1) | 0.81±0.02a | 0.70±0.01b | 0.88±0.04a |
叶绿素b Chlorophyll b (Chl b, mg·g-1) | 0.32±0.03a | 0.24±0.01b | 0.32±0.02a |
类胡萝卜素Carotenoid (Car, mg·g-1) | 0.30±0.00a | 0.27±0.01a | 0.29±0.01a |
叶绿素总量Chl a+b (mg·g-1) | 1.12±0.03a | 0.94±0.02b | 1.19±0.05a |
叶绿素a/b Chl a/b | 2.62±0.25a | 2.92±0.12a | 2.76±0.05a |
花青苷Anthocyanin (Ant, mg·g-1) | 0.27±0.02a | 0.17±0.01b | 0.23±0.01a |
Table 2 Comparison of leaf pigment content of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶绿素a Chlorophyll a (Chl a, mg·g-1) | 0.81±0.02a | 0.70±0.01b | 0.88±0.04a |
叶绿素b Chlorophyll b (Chl b, mg·g-1) | 0.32±0.03a | 0.24±0.01b | 0.32±0.02a |
类胡萝卜素Carotenoid (Car, mg·g-1) | 0.30±0.00a | 0.27±0.01a | 0.29±0.01a |
叶绿素总量Chl a+b (mg·g-1) | 1.12±0.03a | 0.94±0.02b | 1.19±0.05a |
叶绿素a/b Chl a/b | 2.62±0.25a | 2.92±0.12a | 2.76±0.05a |
花青苷Anthocyanin (Ant, mg·g-1) | 0.27±0.02a | 0.17±0.01b | 0.23±0.01a |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
初始荧光Fo | 252.25±13.49b | 261.25±2.29b | 325.75±15.14a |
最大荧光 Fm | 1268.50±45.87b | 1325.00±25.47b | 1782.00±82.60a |
可变荧光 Fv | 1016.50±37.75b | 1063.25±27.57b | 1456.25±67.93a |
PSⅡ反应中心最大光化学效率 Fv/Fm | 0.80±0.01a | 0.80±0.00a | 0.82±0.00a |
PSⅡ量子效率 Fv/Fo | 4.05±0.19a | 4.07±0.14a | 4.47±0.06a |
PSⅡ电子传递情况 Fm/Fo | 5.05±0.19a | 5.07±0.14a | 5.47±0.06a |
PSⅡ单位反应中心吸收的光能 ABS/RC | 1.57±0.09b | 1.84±0.07a | 1.48±0.07b |
PSⅡ单位反应中心捕获的用于还原初级醌受体的能量 TRo/RC | 1.26±0.06b | 1.48±0.07a | 1.21±0.05b |
PSⅡ单位反应中心捕获的用于电子传递的能量 ETo/RC | 0.88±0.00b | 0.98±0.04a | 0.77±0.02c |
PSⅡ单位反应中心热耗散的能量 DIo/RC | 0.31±0.03ab | 0.36±0.01a | 0.27±0.01b |
Table 3 Chlorophyll fluorescence parameters of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
初始荧光Fo | 252.25±13.49b | 261.25±2.29b | 325.75±15.14a |
最大荧光 Fm | 1268.50±45.87b | 1325.00±25.47b | 1782.00±82.60a |
可变荧光 Fv | 1016.50±37.75b | 1063.25±27.57b | 1456.25±67.93a |
PSⅡ反应中心最大光化学效率 Fv/Fm | 0.80±0.01a | 0.80±0.00a | 0.82±0.00a |
PSⅡ量子效率 Fv/Fo | 4.05±0.19a | 4.07±0.14a | 4.47±0.06a |
PSⅡ电子传递情况 Fm/Fo | 5.05±0.19a | 5.07±0.14a | 5.47±0.06a |
PSⅡ单位反应中心吸收的光能 ABS/RC | 1.57±0.09b | 1.84±0.07a | 1.48±0.07b |
PSⅡ单位反应中心捕获的用于还原初级醌受体的能量 TRo/RC | 1.26±0.06b | 1.48±0.07a | 1.21±0.05b |
PSⅡ单位反应中心捕获的用于电子传递的能量 ETo/RC | 0.88±0.00b | 0.98±0.04a | 0.77±0.02c |
PSⅡ单位反应中心热耗散的能量 DIo/RC | 0.31±0.03ab | 0.36±0.01a | 0.27±0.01b |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn,μmol·m-2·s-1) | 30.43±0.77ab | 28.38±0.63b | 34.75±2.63a |
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | 7.65±0.62a | 8.15±0.27a | 5.88±0.34b |
水蒸气压亏损 Vapor pressure deficit (VPD,mmol·m-2·s-1) | 2.37±0.18a | 2.56±0.08a | 1.43±0.15b |
气孔导度 Stomatal conductance (Gs,mmol·m-2·s-1) | 383.25±33.91b | 362.00±19.86b | 479.75±17.67a |
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | 389.00±6.89a | 390.00±3.70a | 458.25±43.10a |
水分利用效率 Water use efficiency (WUE,μmol·mmol-1) | 4.04±0.26b | 3.49±0.07b | 5.97±0.58a |
Table 4 Photosynthetic parameters of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn,μmol·m-2·s-1) | 30.43±0.77ab | 28.38±0.63b | 34.75±2.63a |
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | 7.65±0.62a | 8.15±0.27a | 5.88±0.34b |
水蒸气压亏损 Vapor pressure deficit (VPD,mmol·m-2·s-1) | 2.37±0.18a | 2.56±0.08a | 1.43±0.15b |
气孔导度 Stomatal conductance (Gs,mmol·m-2·s-1) | 383.25±33.91b | 362.00±19.86b | 479.75±17.67a |
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | 389.00±6.89a | 390.00±3.70a | 458.25±43.10a |
水分利用效率 Water use efficiency (WUE,μmol·mmol-1) | 4.04±0.26b | 3.49±0.07b | 5.97±0.58a |
1 | Zhang L M. On the significance and plant allocation principles in the landscape construction in the urban ecological system. Value Engineering, 2010, 29(4): 157. |
张黎明. 论城市生态系统中园林建设的重要性及植物配置原则. 价值工程, 2010, 29(4): 157. | |
2 | Zhou Y Q, Wen Z Y, Fan W L, et al. Comparative study of Chinese and American flower industry. Northern Horticulture, 2019(4): 154-161. |
周雨琦, 温振英, 樊晚林, 等. 中美花卉产业比较研究. 北方园艺, 2019(4): 154-161. | |
3 | He Y Q, Liu J X, Wei K, et al. Evaluation on the development and application of Pingtan wild herbaceous flower based on Grey Relational Degree. Pratacultural Science, 2020, 37(8): 1497-1507. |
何雅琴, 刘健行, 魏凯, 等. 基于灰色关联度的平潭野生草本花卉开发应用评价. 草业科学, 2020, 37(8): 1497-1507. | |
4 | Zhang Y H, Wang Y. An analysis of feasibility of flower field development in China. World Forestry Research, 2018, 31(3): 52-57. |
张艳慧, 王雁. 花田在中国发展的可行性分析. 世界林业研究, 2018, 31(3): 52-57. | |
5 | Zhao X, Jia R D, Zhu J, et al. The achievements of conservation and utilization for wild important flower resources in China. Journal of Plant Genetic Resources, 2020, 21(6): 1494-1502. |
赵鑫, 贾瑞冬, 朱俊, 等. 我国重要花卉野生资源保护利用成就与展望. 植物遗传资源学报, 2020, 21(6): 1494-1502. | |
6 | Zhang L J, Dai S L. Study and exploration on some flowers and its wild relatives in China. Journal of Beijing Forestry University, 2007(6): 190-195. |
张莉俊, 戴思兰. 我国重要花卉及其野生近缘种的研究开发. 北京林业大学学报, 2007(6): 190-195. | |
7 | Bai J Y, Liu D Y. Effects of salt stress on seed germination of Hesperis matronalis. Journal of Hebei Agricultural Sciences, 2019, 23(2): 53-56, 59. |
白靖怡, 刘冬云. 盐胁迫对蓝香芥种子萌发的影响. 河北农业科学, 2019, 23(2): 53-56, 59. | |
8 | Wu Z Y. Flora of China. Beijing: Beijing Science Press, 2001. |
吴征镒. 中国植物志(英文版). 北京: 科学出版社, 2001. | |
9 | Jiang H B, Ding Q, Jia G X, et al. The resources of herbaceous wild flowers in Longtou Mountain of Hebei Province and their utilization in landscape gardening. Scientia Silvae Sinicae, 2004, 40(6): 102-109. |
姜洪波, 丁琼, 贾桂霞, 等. 河北省龙头山区野生草本花卉植物资源及园林应用. 林业科学, 2004, 40(6): 102-109. | |
10 | Tang W H, Dou Q Q, Pan P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(3): 81-88. |
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究. 南京林业大学学报(自然科学版), 2020, 44(3): 81-88. | |
11 | Li F L, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 2005, 22(Supple1): 118-127. |
李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 2005, 22(增刊1): 118-127. | |
12 | Du Y X, Ji X, Zhang J, et al. Research progress on the impacts of low light intensity on rice growth and development. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1307-1317. |
杜彦修, 季新, 张静, 等. 弱光对水稻生长发育影响研究进展. 中国生态农业学报, 2013, 21(11): 1307-1317. | |
13 | Fan B L, Ma Q L, Guo S J, et al. Ecophysiological responses of mother and daughter ramets in response to wind erosion and sand burial in clonal shrub plant Calligonum mongolicun. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2491-2497. |
樊宝丽, 马全林, 郭树江, 等. 克隆植物沙拐枣的母株和分株对风蚀沙埋的生理生态响应. 西北植物学报, 2016, 36(12): 2491-2497. | |
14 | Li J X, Tian Q. Leaf morphology and photosynthetic physiological characteristics of six garden plants in Lanzhou. Journal of Northwest A&F University (Natural Science Edition), 2022(1): 1-9. |
李娟霞, 田青. 兰州市6种园林植物叶片形态和光合生理特征. 西北农林科技大学学报(自然科学版), 2022(1): 1-9. | |
15 | Li H S. Principles and techniques of plant physiology and biochemistry experiment. Beijing: Higher Education Press, 2001. |
李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2001. | |
16 | Xu J R, Zhang M W, Liu X H, et al. Correlation between antioxidation, and content of total phenolics and anthocyanin in black soybean accessions. Scientia Agricultura Sinica, 2006(8): 1545-1552. |
徐金瑞, 张名位, 刘兴华, 等. 黑大豆种质抗氧化能力及其与总酚和花色苷含量的关系. 中国农业科学, 2006(8): 1545-1552. | |
17 | Wei C X, Xie P S, Zhou W D, et al. Comparison of preparing slice techniques of convexo-concave leaf epiderms. Journal of Biology, 2008(2): 63-66. |
韦存虚, 谢佩松, 周卫东, 等. 凹凸不平的植物叶片表皮制片方法的观察比较. 生物学杂志, 2008(2): 63-66. | |
18 | Li Q, He X, He Y M, et al. Comparative study of leaf characters in 6 species of Leguminosae. Journal of Arid Land Resources and Environment, 2017, 31(11): 148-153. |
李琪, 贺晓, 贺一鸣, 等. 豆科3属6种植物叶片特征比较研究. 干旱区资源与环境, 2017, 31(11): 148-153. | |
19 | Zhang S M, Liu H Y, Cheng J J, et al. Free-hand section techniques for clear observation of cell structures of millet (Setaria italica) and rice (Oryza sativa) leaves. Genomics and Applied Biology, 2015, 34(7): 1527-1530. |
张书敏, 刘红云, 程金金, 等. 快速徒手切片法观察谷子和水稻叶片显微结构. 基因组学与应用生物学, 2015, 34(7): 1527-1530. | |
20 | García-Cervigón A I, García-López M A, Pistón N, et al. Coordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Annals of Botany, 2021, 127(7): 919-929. |
21 | Li Y Q, Wang Z H. Leaf morphological traits: Ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 2021, 45(10): 1154-1172. |
李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 2021, 45(10): 1154-1172. | |
22 | Liu X M, Tang N, Chen Z X, et al. Progress in plant trichome development research. Acta Horticulturae Sinica, 2021, 48(4): 705-718. |
刘晓梦, 唐宁, 陈泽雄, 等. 植物表皮毛发育研究进展. 园艺学报, 2021, 48(4): 705-718. | |
23 | Kim H J, Han J H, Kim S, et al. Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 2010, 122(6): 1051-1058. |
24 | Du B, Zhu Y, Kang H, et al. Spatial variations in stomatal traits and their coordination with leaf traits in Quercus variabilis across Eastern Asia. Science of the Total Environment, 2021, 789: 147757. |
25 | Gong R, Gao Q. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 2015, 39(3): 300-308. |
龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 2015, 39(3): 300-308. | |
26 | Tian L L, Wei J Q, Wang Z H, et al. The effect of shading on photosynthesis and fluorescence parameters of Borago officinalis. Journal of Hebei Agricultural University, 2019, 42(3): 81-87. |
田琳琳, 魏佳祺, 王中华, 等. 遮阴对玻璃苣光合特性的影响. 河北农业大学学报, 2019, 42(3): 81-87. | |
27 | Sun X L, Xu Y F, Ma L Y, et al. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999. |
孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34(8): 989-999. | |
28 | Chen L Y, Xie D J, Rong J D, et al. Effects of photosynthetic pigment content on photosynthetic characteristics of different leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Scientia Silvae Sinicae, 2019, 55(12): 21-31. |
陈凌艳, 谢德金, 荣俊冬, 等. 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响. 林业科学, 2019, 55(12): 21-31. | |
29 | Sun G L, Xu M, Li J, et al. Study on characteristics of net photosynthetic rate of two kinds of tree shape and impact factors in Korla fragrant pear. Acta Ecologica Sinica, 2013, 33(18): 5565-5573. |
孙桂丽, 徐敏, 李疆, 等. 香梨两种树形净光合速率特征及影响因素. 生态学报, 2013, 33(18): 5565-5573. | |
30 | Sharma D K, Andersen S B, Ottosen C O, et al. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 2015, 153(2): 284. |
31 | Feng F, Fan P P, Liu C, et al. Intergenerational response of chlorophyll fluorescence characteristics of rice to elevated CO2 concentration. Ecology and Environmental Sciences, 2019, 28(3): 463-471. |
冯芳, 范佩佩, 刘超, 等. 水稻叶绿素荧光特性对CO2浓度升高的代际响应研究. 生态环境学报, 2019, 28(3): 463-471. | |
32 | Zhao J W, Li Q Y, Lu B, et al. Comparison of photosynthetic parameters between Pyrus betulaefolia and Pyrus calleryana under NaCl stress. Northern Horticulture, 2019(22): 97-104. |
赵佳伟, 李清亚, 路斌, 等. NaCl胁迫下北美豆梨和杜梨的光合荧光参数比较. 北方园艺, 2019(22): 97-104. | |
33 | Zhan L Y, Wang J, Lin Y Z. Effect of light on anthocyanin synthesis in plant. Northern Horticulture, 2016(12): 197-201. |
占丽英, 王晶, 林义章. 光影响植物花青苷合成研究. 北方园艺, 2016(12): 197-201. | |
34 | Li X H, Yan H J, Wei T Z, et al. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 2019, 43(10): 889-898. |
李鑫豪, 闫慧娟, 卫腾宙, 等. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 2019, 43(10): 889-898. | |
35 | Jia Z H, Yin X, Luo W, et al. Relating landscape characteristics to water quality dynamics in the ditches and ponds of the plain river network area in the lower reaches of the Yangtze River basin, China. Journal of Agricultural Resources and Environment, 2021, 38(4): 665-676. |
贾忠华, 尹玺, 罗纨, 等. 平原河网区排水沟塘水质动态与景观特征的关系. 农业资源与环境学报, 2021, 38(4): 665-676. | |
36 | Liu F T, Wang X Q, Chi Q H, et al. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” regions of southwest China. Science of the Total Environment, 2021, 794: 148795. |
37 | Wang X Y, Zhang J, Meng H S, et al. Effects of different concentrations of nano cerium and ionic cerium on physiological properties of bok choy (Brassica chinensis L.). Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(3): 69-78. |
王向英, 张杰, 孟会生, 等. 不同浓度纳米铈和离子铈对小油菜生理指标的影响. 山西农业大学学报(自然科学版), 2021, 41(3): 69-78. |
[1] | Yong-chao ZHANG, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
[2] | Yan-zhong LI, Jun-qiang YU, Ming LI. Preliminary evaluation of 48 alfalfa varieties for resistance to three diseases [J]. Acta Prataculturae Sinica, 2021, 30(9): 62-75. |
[3] | Shi-ya WANG, Dian-feng ZHENG, Nai-jie FENG, Xi-long LIANG, Hong-tao XIANG, Sheng-jie FENG, Xin-xin WANG, Guan-qiang ZUO. Damage to the AsA-GSH cycle of soybean leaves under waterlogging stress at in seed filling period growth stages and the mitigation effect of uniconazole [J]. Acta Prataculturae Sinica, 2021, 30(7): 157-166. |
[4] | He-xing QI, Guang-xin LU, Zong-ren LI, Cheng-ti XU, Ke-jia DE, Xiao-juan ZHOU, Ying-cheng WANG, Gui-hua MA. Identification and pathogenicity of Alternaria leaf blight strains in silage maize in Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(6): 94-105. |
[5] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[6] | Xiao-qiang ZHAO, Yuan ZHONG, Wen-qi ZHOU. QTL mapping and candidate gene analysis of leaf area in maize (Zea mays) under different watering environments [J]. Acta Prataculturae Sinica, 2021, 30(5): 103-120. |
[7] | Hui WANG, Hao-qi TIAN, Pei-sheng MAO, Wen-hui LIU, Zhi-feng JIA, Lu-ping WEI, Qing-ping ZHOU. Progress in research on the photosynthetic characteristics of green non-leaf organs in plants [J]. Acta Prataculturae Sinica, 2021, 30(10): 191-200. |
[8] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
[9] | SHAN Li-wen, ZHANG Qiang, ZHU Rui-feng, KONG Xiao-lei, CHEN Ji-shan. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application [J]. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
[10] | TONG Chang-chun, LIU Xiao-jing, LIN Fang, YU Tie-feng. Yield effect of optimisation of photosynthetic characteristics of alfalfa through balanced fertilization [J]. Acta Prataculturae Sinica, 2020, 29(8): 70-80. |
[11] | WANG Chun-ming, YUAN Wei-wei, ZHANG Xiao-jie, ZHOU Tian-wang, GUO Cheng, JIN She-lin. Isolation, identification and biological characteristics of Alternaria brassicicola leaf spot on Orychophragums violaceus [J]. Acta Prataculturae Sinica, 2020, 29(5): 88-97. |
[12] | KANG Cai-rui, XIE Jun-hong, LI Ling-ling, WANG Jia-nan, GUO Xi-jun, PENG Zheng-kai, WANG Jin-bin, Setor kwami Fudjoe, WANG Lin-lin. Effects of planting density and nitrogen fertilizer rate on maize yield and photosynthetic characteristics in arid areas of central Gansu, China [J]. Acta Prataculturae Sinica, 2020, 29(5): 141-149. |
[13] | NIE Xiu-mei, ZHAO Gui-qin, SUN Hao-yang, CHAI Ji-kuan, LAN Xiao-jun, ZHOU Heng, LI Rong, JU Ze-liang, JIAO Run-an, SUN Lei-lei. Incidence of oat leaf spot and pathogen identification in the main oat production areas of Gansu Province [J]. Acta Prataculturae Sinica, 2020, 29(4): 157-167. |
[14] | ZHAO Xiao-qiang, LU Yan-tian, BAI Ming-xing, XU Ming-xia, PENG Yun-ling, DING Yong-fu, ZHUANG Ze-long, CHEN Fen-qi, ZHANG Da-zhi. Response of maize genotypes with different plant architecture to drought stress [J]. Acta Prataculturae Sinica, 2020, 29(2): 149-162. |
[15] | LI Si-zhong, ZHANG Li-ming, GAO Wei-shi, BAI Xiao-shan, LIU Jun, DONG Xin-jiu, YANG Hong-ze, SHA Hong, GAO Yan. Effects of re-watering after drought on leaf photosynthetic light response characteristics of sugar beet [J]. Acta Prataculturae Sinica, 2020, 29(11): 198-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||