Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (11): 198-204.DOI: 10.11686/cyxb2020011

Previous Articles    

Effects of re-watering after drought on leaf photosynthetic light response characteristics of sugar beet

LI Si-zhong, ZHANG Li-ming, GAO Wei-shi*, BAI Xiao-shan, LIU Jun, DONG Xin-jiu, YANG Hong-ze, SHA Hong, GAO Yan   

  1. Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
  • Received:2020-01-07 Revised:2020-02-18 Online:2020-11-20 Published:2020-11-20
  • Contact: *E-mail: xjnkygws@126.com
  • Supported by:
    农业部国家糖料产业技术体系“甜菜高产高糖品种改良”(CARS-170108)资助

Abstract: This research explored the physiological leaf response mechanisms of sugar beet to re-watering after drought with a focus on photosynthetic physiological traits and photo-responsive parameters. Two cultivars with different drought resistance, ‘XJT9907’ (a drought sensitive type) and ‘XJT9916’ (a drought tolerant type) were studied. A controlled water deficit was imposed on plants in the leafy growth stage, whereby soil moisture content was allowed to fall to 45%-50% of field water holding capacity for 7 days, then irrigation water was added to raise soil moisture to 70%-75% of the field water holding capacity for 48 hours. At this point, the photosynthetic physiological parameters of leaves were determined, and nonlinear regression used to fit sigmoid curves for the relationship between net photosynthetic rate of leaves and light intensity. It was found that drought stress during the leafy growth stage of sugar beet development significantly reduced the SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of both sugar beet varieties. After re-watering, the SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) of sugar beet leaves under drought stress treatments all improved. The values of physiological parameters for drought tolerant XJT9916 were significantly higher than those of drought sensitive XJT9907, although none of the values exceeded those of plants with a normal level of water supply, indicating a degree of compensation effect. After the re-watering treatment, the maximum net photosynthetic rates (Pnmax) of XJT9916 and XJT9907 varieties were, respectively, 6.2% and 17.1% lower than the control, and the apparent quantum efficiency (AQY) was, respectively, 6.5% and 12.2% lower than the control. Similarly, comparing drought tolerant and drought sensitive varieties to control plants. respiration rates (Rd) were, respectively, 19.1% and 14.9% lower than the control, light saturation points (LSP) were 19.6% and 14.1% lower than the control, while the light compensation points (LCP) were, respectively, 15.4% and 17.6% (P<0.05) higher than the control. For the drought sensitive variety, the light energy utilization interval was comparatively narrow, and the light energy utilization efficiency was reduced. Taken together, the results show that when the soil moisture content is 45%-50% of the field water holding capacity during the sugar beet leafy growth period, the photosynthetic potential of sugar beet leaves is not realized, the photosynthetic capacity of the leaves is weakened and cannot be restored to normal levels after re-watering. The drought-tolerant sugar beet variety XJT9916 has strong photosynthetic recovery ability in the context of re-watering after drought.

Key words: sugar beet, light response, leafy period, drought