Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (12): 106-117.DOI: 10.11686/cyxb2021471
Previous Articles Next Articles
Guo-xiang ZHANG(), Wei-leng GUO(), Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO()
Received:
2021-12-14
Revised:
2022-01-27
Online:
2022-12-20
Published:
2022-10-17
Contact:
Chang-hong GUO
Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa[J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117.
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAX1 | TTGTTGTTGATGGCTGTAATGG | CAAGTTCTTCCTCCTCGTCAG |
MsCAX2 | GTTGTTGATGGCTGTAATGGG | CCTCGTCAGAGTTTTCACTTGTA |
MsCAX3 | TTGGGAAGTCCGTCTTATCTC | GACAACACTGATACCCATACCG |
MsCAX11 | GACAGAAAACAGGCAGATGTAAAT | AATGTCATACCCACCAACCA |
MsCAX12 | ATGAGGCAGAAGAAGAGGCT | GCGAAAATGATTGCTCCTG |
MsCAX15 | ATGTGCTTCGCTTAGGGTC | CATTAAGAAGTCCTCCAACTGTAG |
MsGAPDH | ACGAGCGTTTCAGATG | ACCTCCGATCCAGACA |
Table 1 Primers used in this study
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAX1 | TTGTTGTTGATGGCTGTAATGG | CAAGTTCTTCCTCCTCGTCAG |
MsCAX2 | GTTGTTGATGGCTGTAATGGG | CCTCGTCAGAGTTTTCACTTGTA |
MsCAX3 | TTGGGAAGTCCGTCTTATCTC | GACAACACTGATACCCATACCG |
MsCAX11 | GACAGAAAACAGGCAGATGTAAAT | AATGTCATACCCACCAACCA |
MsCAX12 | ATGAGGCAGAAGAAGAGGCT | GCGAAAATGATTGCTCCTG |
MsCAX15 | ATGTGCTTCGCTTAGGGTC | CATTAAGAAGTCCTCCAACTGTAG |
MsGAPDH | ACGAGCGTTTCAGATG | ACCTCCGATCCAGACA |
基因登录号 Gene ID | 基因名 Gene name | 氨基酸长度 Amino acid length (aa) | 等电点 PI | 分子量 Molecular weight (kDa) | 不稳定指数 Instability index | 疏水性 指数 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构数目 No. of transmembrane domains |
---|---|---|---|---|---|---|---|---|
MS.gene99860 | MsCAX1 | 460 | 5.52 | 49.87385 | 44.42 | 0.516 | 104.72 | 11 |
MS.gene83511 | MsCAX2 | 446 | 5.41 | 48.36603 | 44.32 | 0.544 | 105.81 | 11 |
MS.gene067498 | MsCAX3 | 464 | 5.62 | 50.36244 | 44.47 | 0.511 | 104.44 | 11 |
MS.gene70485 | MsCAX4 | 407 | 5.20 | 44.38009 | 37.15 | 0.562 | 120.69 | 9 |
MS.gene044358 | MsCAX5 | 367 | 5.50 | 39.90768 | 34.51 | 0.483 | 120.84 | 8 |
MS.gene044315 | MsCAX6 | 442 | 5.21 | 48.20153 | 34.66 | 0.570 | 117.08 | 9 |
MS.gene057847 | MsCAX7 | 457 | 5.36 | 50.22957 | 29.72 | 0.524 | 116.56 | 10 |
MS.gene43800 | MsCAX8 | 434 | 6.50 | 47.51891 | 31.02 | 0.609 | 121.98 | 10 |
MS.gene44897 | MsCAX9 | 434 | 6.50 | 47.54693 | 30.85 | 0.608 | 121.98 | 10 |
MS.gene009878 | MsCAX10 | 434 | 6.50 | 47.50088 | 31.46 | 0.615 | 122.88 | 10 |
MS.gene88788 | MsCAX11 | 420 | 6.30 | 45.83903 | 28.84 | 0.656 | 126.98 | 10 |
MS.gene84200 | MsCAX12 | 455 | 5.74 | 49.23152 | 37.33 | 0.580 | 123.25 | 11 |
MS.gene77339 | MsCAX13 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene92638 | MsCAX14 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene78431 | MsCAX15 | 455 | 5.74 | 49.22955 | 36.91 | 0.586 | 123.47 | 11 |
Table 2 CAX genes information identified in the alfalfa genome
基因登录号 Gene ID | 基因名 Gene name | 氨基酸长度 Amino acid length (aa) | 等电点 PI | 分子量 Molecular weight (kDa) | 不稳定指数 Instability index | 疏水性 指数 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构数目 No. of transmembrane domains |
---|---|---|---|---|---|---|---|---|
MS.gene99860 | MsCAX1 | 460 | 5.52 | 49.87385 | 44.42 | 0.516 | 104.72 | 11 |
MS.gene83511 | MsCAX2 | 446 | 5.41 | 48.36603 | 44.32 | 0.544 | 105.81 | 11 |
MS.gene067498 | MsCAX3 | 464 | 5.62 | 50.36244 | 44.47 | 0.511 | 104.44 | 11 |
MS.gene70485 | MsCAX4 | 407 | 5.20 | 44.38009 | 37.15 | 0.562 | 120.69 | 9 |
MS.gene044358 | MsCAX5 | 367 | 5.50 | 39.90768 | 34.51 | 0.483 | 120.84 | 8 |
MS.gene044315 | MsCAX6 | 442 | 5.21 | 48.20153 | 34.66 | 0.570 | 117.08 | 9 |
MS.gene057847 | MsCAX7 | 457 | 5.36 | 50.22957 | 29.72 | 0.524 | 116.56 | 10 |
MS.gene43800 | MsCAX8 | 434 | 6.50 | 47.51891 | 31.02 | 0.609 | 121.98 | 10 |
MS.gene44897 | MsCAX9 | 434 | 6.50 | 47.54693 | 30.85 | 0.608 | 121.98 | 10 |
MS.gene009878 | MsCAX10 | 434 | 6.50 | 47.50088 | 31.46 | 0.615 | 122.88 | 10 |
MS.gene88788 | MsCAX11 | 420 | 6.30 | 45.83903 | 28.84 | 0.656 | 126.98 | 10 |
MS.gene84200 | MsCAX12 | 455 | 5.74 | 49.23152 | 37.33 | 0.580 | 123.25 | 11 |
MS.gene77339 | MsCAX13 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene92638 | MsCAX14 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene78431 | MsCAX15 | 455 | 5.74 | 49.22955 | 36.91 | 0.586 | 123.47 | 11 |
蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand | 蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand |
---|---|---|---|---|---|---|---|---|---|
MsCAX1 | 50.43 | 2.61 | 33.48 | 13.48 | MsCAX9 | 52.30 | 2.53 | 29.95 | 15.21 |
MsCAX2 | 50.45 | 2.69 | 31.84 | 15.02 | MsCAX10 | 55.30 | 3.23 | 27.42 | 14.06 |
MsCAX3 | 48.71 | 2.59 | 33.84 | 14.87 | MsCAX11 | 52.29 | 3.57 | 27.39 | 14.76 |
MsCAX4 | 56.02 | 3.19 | 25.80 | 14.99 | MsCAX12 | 48.57 | 2.86 | 30.33 | 18.27 |
MsCAX5 | 53.13 | 2.72 | 28.34 | 15.80 | MsCAX13 | 52.53 | 2.20 | 30.99 | 14.29 |
MsCAX6 | 48.87 | 3.85 | 29.86 | 17.42 | MsCAX14 | 51.87 | 2.20 | 31.43 | 14.51 |
MsCAX7 | 48.36 | 3.06 | 29.54 | 19.04 | MsCAX15 | 49.45 | 3.08 | 31.21 | 16.26 |
MsCAX8 | 56.68 | 2.76 | 26.27 | 14.29 |
Table 3 The secondary structure of CAX protein in alfalfa (%)
蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand | 蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand |
---|---|---|---|---|---|---|---|---|---|
MsCAX1 | 50.43 | 2.61 | 33.48 | 13.48 | MsCAX9 | 52.30 | 2.53 | 29.95 | 15.21 |
MsCAX2 | 50.45 | 2.69 | 31.84 | 15.02 | MsCAX10 | 55.30 | 3.23 | 27.42 | 14.06 |
MsCAX3 | 48.71 | 2.59 | 33.84 | 14.87 | MsCAX11 | 52.29 | 3.57 | 27.39 | 14.76 |
MsCAX4 | 56.02 | 3.19 | 25.80 | 14.99 | MsCAX12 | 48.57 | 2.86 | 30.33 | 18.27 |
MsCAX5 | 53.13 | 2.72 | 28.34 | 15.80 | MsCAX13 | 52.53 | 2.20 | 30.99 | 14.29 |
MsCAX6 | 48.87 | 3.85 | 29.86 | 17.42 | MsCAX14 | 51.87 | 2.20 | 31.43 | 14.51 |
MsCAX7 | 48.36 | 3.06 | 29.54 | 19.04 | MsCAX15 | 49.45 | 3.08 | 31.21 | 16.26 |
MsCAX8 | 56.68 | 2.76 | 26.27 | 14.29 |
1 | White P J, Broadley M R. Calcium in plants. Annals of Botany, 2003, 92(4): 487-511. |
2 | Ma X, Li Q H, Yu Y N, et al. The CBL-CIPK pathway in plant response to stress signals. International Journal of Molecular Sciences, 2020, 21(16): 5668-5695. |
3 | Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biology, 2016, 18(5): 741-749. |
4 | Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biology, 2006, 8(4): 419-429. |
5 | Manohar M, Shigaki T, Hirschi K D. Plant cation/H+ exchangers (CAXs): Biological functions and genetic manipulations. Plant Biology, 2011, 13(4): 561-569. |
6 | Shigaki T, Rees I, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. Journal of Molecular Evolution, 2006, 63(6): 815-825. |
7 | Cai X J, Lytton J. The cation/Ca2+ exchanger superfamily: Phylogenetic analysis and structural implications. Molecular Biology & Evolution, 2004, 21(9): 1692-1703. |
8 | Kamiya T, Maeshima M. Residues in internal repeats of the rice cation/Ca2+ exchanger are involved in the transport and selection of cations. Journal of Biological Chemistry, 2004, 279(1): 812-819. |
9 | Zhang Y X, Peng X J, Chai T Y, et al. Structure and function of tonoplast cation/H+ antiporters in plant: A review. Chinese Journal of Biotechnology, 2011, 27(4): 546-560. |
张玉秀, 彭晓静, 柴团耀, 等. 植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展. 生物工程学报, 2011, 27(4): 546-560. | |
10 | Hirschi K D. Expression of Arabidopsis CAX1 in tobacco: Altered calcium homeostasis and increased stress sensitivity. Plant Cell, 1999, 11(11): 2113-2122. |
11 | Munmyong C, Won C, Songchol C, et al. Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments. Journal of Biological Physics, 2018, 44(3): 1-16. |
12 | Qiao K, Wang F, Liang S, et al. Heterologous expression of TuCAX1a and TuCAX1b enhances Ca2+ and Zn2+ translocation in Arabidopsis. Plant Cell Reports, 2019, 38(5): 597-607. |
13 | Catalá R, Santos E, Alonso J M, et al. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003, 15(12): 2940-2951. |
14 | Han N, Lan W J, He X, et al. Expression of a Suaeda salsa vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Molecular Biology Reporter, 2012, 30(2): 470-477. |
15 | Navarro-León E, Paradisone V, López-Moreno F J, et al. Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science, 2021, 311: 10. |
16 | Pittman J K, Edmond C, Sunderland P A, et al. A cation-regulated and proton gradient-dependent cation transporter from chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. Journal of Biological Chemistry, 2009, 284(1): 525-533. |
17 | Luo G Z, Wang H W, Huang J, et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Molecular Biology, 2005, 59(5): 809-820. |
18 | Wang X, Ma Y X, Li J. Nutritional constituents and main biological characteristics of alfalfa. Pratacultural Science, 2003(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003(10): 39-41. | |
19 | Yang Q C. Guide to alfalfa production and management. Beijing: China Forestry Publishing House, 2003: 8-68. |
杨青川. 苜蓿生产与管理指南. 北京: 中国林业出版社, 2003: 8-68. | |
20 | Shang X Y, Zhou L F, Shi X Y, et al. Cloning and transformation of ARR gene in Medicago sativa L. Genomics and Applied Biology, 2021: 1-13. |
尚骁尧, 周玲芳, 石欣玥, 等. 紫花苜蓿ARR基因克隆及转化. 基因组学与应用生物学, 2021: 1-13. | |
21 | Shigaki T, Pittman J K, Hirschi K D. Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. Journal of Biological Chemistry, 2003, 278(8): 6610-6617. |
22 | Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta, 2007, 226(6): 1379-1387. |
23 | Bu Y, Fu W, Chen J, et al. Description of AtCAX4 in response to abiotic stress in Arabidopsis. International Journal of Molecular Sciences, 2021, 22(2): 856-868. |
24 | Zou W, Chen J, Meng L, et al. The rice cation/H+ exchanger family involved in Cd tolerance and transport. International Journal of Molecular Sciences, 2021, 22(15): 8186-8203. |
25 | Mao K, Yang J, Wang M, et al. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters. BMC Plant Biology, 2021, 21(1): 81-99. |
26 | Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
27 | Li R C, Dou Y, Xia F. Acceleration technology of biological sequences search algorithm hmmsearch. Computer Engineering, 2010, 36(20): 265-267. |
李荣春, 窦勇, 夏飞. 生物序列搜索算法hmmsearch的加速技术. 计算机工程, 2010, 36(20): 265-267. | |
28 | Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
29 | Wang Y P, Ling L, Zhang W R, et al. Genome-wide identification and expression analysis of B-box gene family in wheat. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
王艳朋, 凌磊, 张文睿, 等. 小麦B-box基因家族全基因组鉴定与表达分析. 作物学报, 2021, 47(8): 1437-1449. | |
30 | Lura E, Simon W, Hirschi K D, et al. Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants. Frontiers in Plant Science, 2012, 3: 1-19. |
31 | Chen C, Zhang Y, Wang J X, et al. Identification and expression analysis of Ca2+/H+ exchanger antiporter (CAX) gene family in Salvia miltiorrhiza. Molecular Plant Breeding, 2020, 18(13): 4241-4252. |
陈尘, 张燕, 王锦霞, 等. 丹参Ca2+/H+反向转运蛋白(SmCAX)基因家族鉴定与表达分析. 分子植物育种, 2020,18(13): 4241-4252. | |
32 | Shigaki T, Mei H, Marshall J, et al. The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast. Plant Biology, 2010, 12(6): 935-939. |
33 | Mehak T, Shivi T, Shailesh S, et al. Ca2+/cation antiporters (CaCA): Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2016, 7: 1775-1794. |
34 | Kong H, Landherr L L, Frohlich M W, et al. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: Evidence for multiple mechanisms of rapid gene birth. Plant Journal, 2010, 50(5): 873-885. |
35 | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4(1): 10-31. |
36 | Bickerton P D, Pittman J K. Role of cation/proton exchangers in abiotic stress signaling and stress tolerance in plants. Elucidation of Abiotic Stress Signaling in Plants, 2015, 1: 95-117. |
37 | Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta, 2008, 227(3): 659-669. |
[1] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
[2] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[3] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[4] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[5] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[6] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[7] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[8] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[9] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[10] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[11] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[12] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[13] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[14] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[15] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||