Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (12): 146-157.DOI: 10.11686/cyxb2021478
Qian CHEN1,2(), Xiao-yun XU1,2, Jun-cheng WANG1,2, Li-rong YAO1,2, Er-jing SI1,2, Ke YANG1,2, Xiao-ling WEI1,2, Xiao-le MA1,2, Bao-chun LI1,3, Xun-wu SHANG2, Ya-xiong MENG1,2(), Hua-jun WANG1,2()
Received:
2021-12-23
Revised:
2022-02-24
Online:
2022-12-20
Published:
2022-10-17
Contact:
Ya-xiong MENG,Hua-jun WANG
Qian CHEN, Xiao-yun XU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Xiao-ling WEI, Xiao-le MA, Bao-chun LI, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus[J]. Acta Prataculturae Sinica, 2022, 31(12): 146-157.
基因Gene | 产物长度Product length (bp) | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|---|
HgWRKY1 | 108 | CGCATCCAAATTGTCCAACGA | TACCAGGCTGAGGCTTAGGA |
HgWRKY2 | 193 | GCAAGGCACTCAAACCCAAC | CGGTGGTGTCTGACCTTCAT |
HgWRKY3 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY4 | 136 | CCGCAAGCAAGCAACATGAA | TCCCAACATCACCCACTTCC |
HgWRKY5 | 108 | CGCATCCAAATTGTCCAACGA | TACCAGGCTGAGGCTTAGGA |
HgWRKY6 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY7 | 174 | TCCCAGTTGGCTAGGACTGT | CCAGCGGTACCCATCATCAA |
HgWRKY8 | 120 | CACAACCACGATGTTCCTGC | ACTGAGAGGCCTTAGACCGA |
HgWRKY9 | 116 | CCATCATCAGGTGGCTCGAA | GCGTTGGTCACGTAGGACTT |
HgWRKY10 | 162 | TGCCCTCAATGGCTATAAGGC | GCCCAGGGTTTTGTAGCATC |
HgWRKY11 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY12 | 197 | TCCGATGAAAGAGCCTGGTG | TGGGATGCGGAGTTCCTTTG |
HgWRKY13 | 102 | TGGATGGAAGTGTGGCGAAT | CGGAGCACCTCTTCCTATGC |
HgWRKY14 | 193 | TGGATCTTCTGGTCGTTGCC | TCCCCGTACGCTACTACACT |
HgWRKY15 | 175 | GGGATGGTATCGTCGGTTGG | TCGCGCTTATTGCTGGTACT |
HgWRKY16 | 113 | GTATCGTCGGTTGGGAGACC | GAACAGTGACAGCGACCAGA |
HgWRKY17 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY18 | 142 | TCTCTTCGTTGAGCGTGGAT | TTGACACTCCCATCTTCGCC |
HgWRKY19 | 169 | CCGACAGTGTTCAACCGTCT | TGGCAACGACCAGAAGATCC |
HgWRKY20 | 195 | CGTTGACTGGTGAGACGGAT | GTCTCCCAACCGACGATACC |
HgWRKY21 | 119 | GGATGGTATCGTCGGTTGGG | AGAACAGTGACAGCGACCAG |
HgWRKY22 | 155 | CTTACCCGCACACAAGTCCA | AGACGGTTGAACACTGTCGG |
HgWRKY23 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY24 | 102 | TGGATGGAAGTGTGGCGAAT | CGGAGCACCTCTTCCTATGC |
HgWRKY25 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY26 | 191 | GGCGGTGGTGGATCTATGTT | TTACGCTTTGACGAGGAGCA |
HgWRKY27 | 155 | CTTACCCGCACACAAGTCCA | AGACGGTTGAACACTGTCGG |
HgWRKY28 | 185 | TACTACCGGTGCACGAACAG | GGCATTGGAGGAGCAAAACG |
HgWRKY29 | 129 | AGTTACTACCGTTGCACCACT | ACGTGGGAGGACAGTACAAG |
HgWRKY30 | 163 | ATGGGCAAAAAGCCGTCAAG | AATGTAGCCGGAACTGGGTG |
HgWRKY31 | 137 | ACAGATGCACCCATCGTCATT | GGGCTGTGAGAAATGGGCTT |
Table 1 The qRT-PCR primers for WRKY family genes in H. glomeratus
基因Gene | 产物长度Product length (bp) | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|---|
HgWRKY1 | 108 | CGCATCCAAATTGTCCAACGA | TACCAGGCTGAGGCTTAGGA |
HgWRKY2 | 193 | GCAAGGCACTCAAACCCAAC | CGGTGGTGTCTGACCTTCAT |
HgWRKY3 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY4 | 136 | CCGCAAGCAAGCAACATGAA | TCCCAACATCACCCACTTCC |
HgWRKY5 | 108 | CGCATCCAAATTGTCCAACGA | TACCAGGCTGAGGCTTAGGA |
HgWRKY6 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY7 | 174 | TCCCAGTTGGCTAGGACTGT | CCAGCGGTACCCATCATCAA |
HgWRKY8 | 120 | CACAACCACGATGTTCCTGC | ACTGAGAGGCCTTAGACCGA |
HgWRKY9 | 116 | CCATCATCAGGTGGCTCGAA | GCGTTGGTCACGTAGGACTT |
HgWRKY10 | 162 | TGCCCTCAATGGCTATAAGGC | GCCCAGGGTTTTGTAGCATC |
HgWRKY11 | 164 | TCGTCGATTTCGGTTGCTGA | ACTACTCTTGGCTCCCTCACT |
HgWRKY12 | 197 | TCCGATGAAAGAGCCTGGTG | TGGGATGCGGAGTTCCTTTG |
HgWRKY13 | 102 | TGGATGGAAGTGTGGCGAAT | CGGAGCACCTCTTCCTATGC |
HgWRKY14 | 193 | TGGATCTTCTGGTCGTTGCC | TCCCCGTACGCTACTACACT |
HgWRKY15 | 175 | GGGATGGTATCGTCGGTTGG | TCGCGCTTATTGCTGGTACT |
HgWRKY16 | 113 | GTATCGTCGGTTGGGAGACC | GAACAGTGACAGCGACCAGA |
HgWRKY17 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY18 | 142 | TCTCTTCGTTGAGCGTGGAT | TTGACACTCCCATCTTCGCC |
HgWRKY19 | 169 | CCGACAGTGTTCAACCGTCT | TGGCAACGACCAGAAGATCC |
HgWRKY20 | 195 | CGTTGACTGGTGAGACGGAT | GTCTCCCAACCGACGATACC |
HgWRKY21 | 119 | GGATGGTATCGTCGGTTGGG | AGAACAGTGACAGCGACCAG |
HgWRKY22 | 155 | CTTACCCGCACACAAGTCCA | AGACGGTTGAACACTGTCGG |
HgWRKY23 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY24 | 102 | TGGATGGAAGTGTGGCGAAT | CGGAGCACCTCTTCCTATGC |
HgWRKY25 | 117 | CATTGCTCCTCGTCAAAGCG | GCCGTATTTGCGCCATGAAT |
HgWRKY26 | 191 | GGCGGTGGTGGATCTATGTT | TTACGCTTTGACGAGGAGCA |
HgWRKY27 | 155 | CTTACCCGCACACAAGTCCA | AGACGGTTGAACACTGTCGG |
HgWRKY28 | 185 | TACTACCGGTGCACGAACAG | GGCATTGGAGGAGCAAAACG |
HgWRKY29 | 129 | AGTTACTACCGTTGCACCACT | ACGTGGGAGGACAGTACAAG |
HgWRKY30 | 163 | ATGGGCAAAAAGCCGTCAAG | AATGTAGCCGGAACTGGGTG |
HgWRKY31 | 137 | ACAGATGCACCCATCGTCATT | GGGCTGTGAGAAATGGGCTT |
基因编号 Genetic code | 基因号 Gene ID | 分子量 Molecular weight (Da) | 氨基酸数 Amino acid quantity (aa) | 长度 Length (bp) | 等电点 Isoelectric point (PI) | 亚细胞定位 Subcellular localization | α螺旋 Alpha-helix (%) | β转角 Beta-turn (%) | 延长链 Extended strand (%) | 无规则卷曲 Random coil (%) |
---|---|---|---|---|---|---|---|---|---|---|
HgWRKY1 | Hg32527 | 39020.8 | 348 | 1047 | 8.63 | Nucleus | 10.63 | 5.17 | 12.93 | 71.26 |
HgWRKY2 | Hg33422 | 65872.3 | 611 | 1836 | 6.29 | Nucleus | 9.66 | 3.93 | 13.58 | 72.83 |
HgWRKY3 | Hg33512 | 64774.9 | 592 | 1779 | 6.48 | Nucleus | 10.81 | 3.38 | 8.78 | 77.03 |
HgWRKY4 | Hg33871 | 58072.5 | 525 | 1578 | 6.22 | Nucleus | 11.24 | 2.67 | 13.52 | 72.57 |
HgWRKY5 | Hg35093 | 64054.2 | 578 | 1737 | 6.03 | Nucleus | 11.42 | 2.77 | 10.38 | 75.43 |
HgWRKY6 | Hg41718 | 48852.7 | 439 | 1320 | 7.61 | Nucleus | 10.48 | 3.87 | 8.43 | 77.22 |
HgWRKY7 | Hg42748 | 54482.6 | 503 | 1512 | 6.07 | Nucleus | 9.74 | 3.98 | 12.92 | 73.36 |
HgWRKY8 | Hg47058 | 42592.6 | 380 | 1143 | 8.76 | Nucleus | 11.58 | 2.89 | 13.68 | 71.84 |
HgWRKY9 | Hg44248 | 40456.7 | 367 | 1104 | 8.43 | Nucleus | 27.25 | 2.18 | 15.80 | 54.77 |
HgWRKY10 | Hg52691 | 35453.2 | 326 | 981 | 7.14 | Nucleus | 14.72 | 3.07 | 11.66 | 70.55 |
HgWRKY11 | Hg32535 | 35453.2 | 326 | 981 | 7.14 | Nucleus | 14.72 | 3.07 | 11.66 | 70.55 |
HgWRKY12 | Hg33409 | 30814.3 | 283 | 852 | 6.80 | Nucleus | 20.85 | 2.47 | 13.43 | 63.25 |
HgWRKY13 | Hg34478 | 41789.8 | 378 | 1137 | 9.67 | Nucleus | 27.25 | 5.56 | 12.17 | 55.03 |
HgWRKY14 | Hg34900 | 42129.2 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY15 | Hg40923 | 42243.2 | 387 | 1164 | 9.54 | Nucleus | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY16 | Hg42453 | 42243.2 | 387 | 1164 | 9.54 | Nucleus | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY17 | Hg42552 | 40884.7 | 378 | 1137 | 9.60 | Nucleus | 17.20 | 10.10 | 19.58 | 53.17 |
HgWRKY18 | Hg43510 | 41710.6 | 377 | 1134 | 9.67 | Nucleus | 28.91 | 4.77 | 10.08 | 56.23 |
HgWRKY19 | Hg44563 | 42129.4 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY20 | Hg45217 | 42243.2 | 387 | 1164 | 9.54 | Nucleus, Mitochondria | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY21 | Hg46151 | 42243.2 | 387 | 1164 | 9.54 | Nucleus, Mitochondria | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY22 | Hg46356 | 39330.3 | 361 | 1086 | 9.70 | Nucleus | 16.62 | 4.43 | 12.19 | 66.76 |
HgWRKY23 | Hg46711 | 40884.7 | 378 | 1137 | 9.60 | Nucleus | 17.20 | 10.10 | 19.58 | 53.17 |
HgWRKY24 | Hg47922 | 41789.8 | 378 | 1137 | 9.67 | Nucleus | 27.25 | 5.56 | 12.17 | 55.03 |
HgWRKY25 | Hg49441 | 40065.7 | 369 | 1110 | 9.56 | Nucleus | 18.70 | 7.32 | 18.43 | 55.56 |
HgWRKY26 | Hg50014 | 40610.4 | 375 | 1128 | 9.60 | Nucleus | 17.60 | 8.53 | 19.47 | 54.40 |
HgWRKY27 | Hg51207 | 42129.4 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY28 | Hg49431 | 24463.3 | 220 | 663 | 9.77 | Nucleus | 9.55 | 4.09 | 13.18 | 73.18 |
HgWRKY29 | Hg41342 | 45534.9 | 414 | 1245 | 6.19 | Nucleus | 27.78 | 5.07 | 16.91 | 50.24 |
HgWRKY30 | Hg50291 | 39304.0 | 359 | 1080 | 6.15 | Nucleus | 28.97 | 5.57 | 12.53 | 52.92 |
HgWRKY31 | Hg45674 | 30599.6 | 272 | 819 | 9.26 | Nucleus | 24.26 | 3.31 | 12.87 | 59.56 |
Table 2 WRKY transcription factors’ information of H. glomeratus
基因编号 Genetic code | 基因号 Gene ID | 分子量 Molecular weight (Da) | 氨基酸数 Amino acid quantity (aa) | 长度 Length (bp) | 等电点 Isoelectric point (PI) | 亚细胞定位 Subcellular localization | α螺旋 Alpha-helix (%) | β转角 Beta-turn (%) | 延长链 Extended strand (%) | 无规则卷曲 Random coil (%) |
---|---|---|---|---|---|---|---|---|---|---|
HgWRKY1 | Hg32527 | 39020.8 | 348 | 1047 | 8.63 | Nucleus | 10.63 | 5.17 | 12.93 | 71.26 |
HgWRKY2 | Hg33422 | 65872.3 | 611 | 1836 | 6.29 | Nucleus | 9.66 | 3.93 | 13.58 | 72.83 |
HgWRKY3 | Hg33512 | 64774.9 | 592 | 1779 | 6.48 | Nucleus | 10.81 | 3.38 | 8.78 | 77.03 |
HgWRKY4 | Hg33871 | 58072.5 | 525 | 1578 | 6.22 | Nucleus | 11.24 | 2.67 | 13.52 | 72.57 |
HgWRKY5 | Hg35093 | 64054.2 | 578 | 1737 | 6.03 | Nucleus | 11.42 | 2.77 | 10.38 | 75.43 |
HgWRKY6 | Hg41718 | 48852.7 | 439 | 1320 | 7.61 | Nucleus | 10.48 | 3.87 | 8.43 | 77.22 |
HgWRKY7 | Hg42748 | 54482.6 | 503 | 1512 | 6.07 | Nucleus | 9.74 | 3.98 | 12.92 | 73.36 |
HgWRKY8 | Hg47058 | 42592.6 | 380 | 1143 | 8.76 | Nucleus | 11.58 | 2.89 | 13.68 | 71.84 |
HgWRKY9 | Hg44248 | 40456.7 | 367 | 1104 | 8.43 | Nucleus | 27.25 | 2.18 | 15.80 | 54.77 |
HgWRKY10 | Hg52691 | 35453.2 | 326 | 981 | 7.14 | Nucleus | 14.72 | 3.07 | 11.66 | 70.55 |
HgWRKY11 | Hg32535 | 35453.2 | 326 | 981 | 7.14 | Nucleus | 14.72 | 3.07 | 11.66 | 70.55 |
HgWRKY12 | Hg33409 | 30814.3 | 283 | 852 | 6.80 | Nucleus | 20.85 | 2.47 | 13.43 | 63.25 |
HgWRKY13 | Hg34478 | 41789.8 | 378 | 1137 | 9.67 | Nucleus | 27.25 | 5.56 | 12.17 | 55.03 |
HgWRKY14 | Hg34900 | 42129.2 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY15 | Hg40923 | 42243.2 | 387 | 1164 | 9.54 | Nucleus | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY16 | Hg42453 | 42243.2 | 387 | 1164 | 9.54 | Nucleus | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY17 | Hg42552 | 40884.7 | 378 | 1137 | 9.60 | Nucleus | 17.20 | 10.10 | 19.58 | 53.17 |
HgWRKY18 | Hg43510 | 41710.6 | 377 | 1134 | 9.67 | Nucleus | 28.91 | 4.77 | 10.08 | 56.23 |
HgWRKY19 | Hg44563 | 42129.4 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY20 | Hg45217 | 42243.2 | 387 | 1164 | 9.54 | Nucleus, Mitochondria | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY21 | Hg46151 | 42243.2 | 387 | 1164 | 9.54 | Nucleus, Mitochondria | 17.31 | 3.62 | 11.11 | 67.96 |
HgWRKY22 | Hg46356 | 39330.3 | 361 | 1086 | 9.70 | Nucleus | 16.62 | 4.43 | 12.19 | 66.76 |
HgWRKY23 | Hg46711 | 40884.7 | 378 | 1137 | 9.60 | Nucleus | 17.20 | 10.10 | 19.58 | 53.17 |
HgWRKY24 | Hg47922 | 41789.8 | 378 | 1137 | 9.67 | Nucleus | 27.25 | 5.56 | 12.17 | 55.03 |
HgWRKY25 | Hg49441 | 40065.7 | 369 | 1110 | 9.56 | Nucleus | 18.70 | 7.32 | 18.43 | 55.56 |
HgWRKY26 | Hg50014 | 40610.4 | 375 | 1128 | 9.60 | Nucleus | 17.60 | 8.53 | 19.47 | 54.40 |
HgWRKY27 | Hg51207 | 42129.4 | 389 | 1170 | 9.56 | Nucleus | 23.39 | 4.88 | 10.28 | 61.44 |
HgWRKY28 | Hg49431 | 24463.3 | 220 | 663 | 9.77 | Nucleus | 9.55 | 4.09 | 13.18 | 73.18 |
HgWRKY29 | Hg41342 | 45534.9 | 414 | 1245 | 6.19 | Nucleus | 27.78 | 5.07 | 16.91 | 50.24 |
HgWRKY30 | Hg50291 | 39304.0 | 359 | 1080 | 6.15 | Nucleus | 28.97 | 5.57 | 12.53 | 52.92 |
HgWRKY31 | Hg45674 | 30599.6 | 272 | 819 | 9.26 | Nucleus | 24.26 | 3.31 | 12.87 | 59.56 |
1 | Wicke B, Smeets E, Dornburg V, et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy and Environmental Science, 2011, 4: 2669-2681. |
2 | Kaashyap M, Ford R, Bohra A, et al. Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Current Genomics, 2017, 18(6): 557-567. |
3 | Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China. Bulletin of Chinese Academy of Sciences, 2015, 30(Z1): 162-170. |
杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用. 中国科学院院刊, 2015, 30(Z1): 162-170. | |
4 | Li K, Zhou C J. Research progress in WRKY transcription factors in plants. Plant Physiology Journal, 2014, 50(9): 1329-1335. |
李岢, 周春江. 植物WRKY转录因子的研究进展. 植物生理学报, 2014, 50(9): 1329-1335. | |
5 | Duan M R, Nan J, Liang Y H, et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Research, 2007, 35(4): 1145-1154. |
6 | Thomas E, Paul J R, Silke R, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 196-206. |
7 | Dou L L, Zhang X H, Pang C Y, et al. Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics and Genomics, 2014, 289(6): 1103-1121. |
8 | Bi C Y, Huang X F, Wang H S, et al. Identification of WRKY transcription factor gene in Ipomoea batatas genome and expression analysis under stresses. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(9): 30-44. |
毕楚韵, 黄小芳, 王和寿, 等. 甘薯全基因组WRKY转录因子的基因鉴定与逆境胁迫表达分析. 西北农林科技大学学报(自然科学版), 2021, 49(9): 30-44. | |
9 | Jiang T, Lin Y X, Liu X, et al. Genome-wide analysis of WRKY transcription factor genes in alfalfa. Acta Prataculturae Sinica, 2011, 20(3): 211-218. |
江腾, 林勇祥, 刘雪, 等. 苜蓿全基因组WRKY转录因子基因的分析. 草业学报, 2011, 20(3): 211-218. | |
10 | Zheng J J, Zhang Z L, Tong T, et al. Genome-wide identification of WRKY gene family and expression analysis under abiotic stress in barley. Agronomy, 2021, 11(3): 521. |
11 | Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell, 2002, 14(6): 1359-1375. |
12 | Wang Q J, Chen L G, Yu D Q. Overexpression of AtWRKY71 affects plant’s defense response to Pseudomonas syringae. Plant Diversity and Resources, 2015, 37(5): 577-585. |
王其娟, 陈利钢, 余迪求. 过表达AtWRKY71影响植物对病原菌Pseudomonas syringae的抗性. 植物分类与资源学报, 2015, 37(5): 577-585. | |
13 | Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells, 2011, 31(4): 303-313. |
14 | Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiology, 2004, 136(1): 2734-2746. |
15 | Wang R Y, Wen W W, Zhao E H, et al. Cloning and salt-tolerance analysis of MsWRKY11 in alfalfa. Acta Prataculturae Sinica, 2021, 30(11): 157-169. |
王如月, 文武武, 赵恩华, 等. 紫花苜蓿MsWRKY11基因的克隆及其耐盐功能分析. 草业学报, 2021, 30(11): 157-169. | |
16 | Benckemalato M, Cabreira C, Wiebkestrohm B, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC Plant Biology, 2014, 14(1): 1-18. |
17 | Yao L R, Wang J C, Li B C, et al. Influences of heavy metals and salt on seed germination and seedling characteristics of halophyte Halogeton glomeratus. Bulletin of Environmental Contamination and Toxicology, 2021, 106(3): 545-556. |
18 | Wang J C, Meng Y C, Li B C, et al. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell & Environment, 2015, 38(4): 655-669. |
19 | Wang J C, Yao L R, Li B C, et al. Single-molecule long-read transcriptome dataset of halophyte Halogeton glomeratus. Frontiers in Genetics, 2017, 8: 197. |
20 | Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. |
21 | Ma Y H, Xu X L, Wang J C, et al. Cloning and expression analysis of Actin gene fragment from halophyte Halogeton glomeratus. Pratacultural Science, 2015, 32(9): 1432-1437. |
马艳红, 徐先良, 汪军成, 等. 盐生草Actin基因片段的克隆及表达. 草业科学, 2015, 32(9): 1432-1437. | |
22 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
23 | Chen X, Chen R H, Wang Y F, et al. Genome-wide identification of WRKY transcription factors in Chinese jujube (Ziziphus jujuba Mill.) and their involvement in fruit developing, ripening, and abiotic stress. Genes, 2019, 10(5): 360. |
24 | Sun S H, Yu D Q. WRKY transcription factors in regulation of stress response in plant. Biotechnology Bulletin, 2016, 32(10): 66-76. |
孙淑豪, 余迪求. WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016, 32(10): 66-76. | |
25 | Kong W L, Yu K, Dan N Z, et al. Genome-wide identification and expression analysis of WRKY transcription factor under abiotic stress in Beta vulgaris. Scientia Agricultura Sinica, 2017, 50(17): 3259-3273. |
孔维龙, 于坤, 但乃震, 等. 甜菜WRKY转录因子全基因组鉴定及其在非生物胁迫下的表达分析. 中国农业科学, 2017, 50(17): 3259-3273. | |
26 | Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology, 2007, 49(6): 827-842. |
27 | Huang S, Gao Y, Liu J, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012, 287(6): 495-513. |
28 | Li M Y, Xu Z S, Tian C, et al. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Scientific Reports, 2016, 6(1): 1-17. |
29 | Zhang Y, Wang L. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolution Biology, 2005, 5(1): 1-11. |
30 | Lin S N, Liu J W, Zhang X N, et al. Genome-wide identification and expression analysis of WRKY gene family in Dianthus caryophyllus. Acta Horticulturae Sinica, 2021, 48(9): 1768-1784. |
林胜男, 刘杰玮, 张晓妮, 等. 香石竹WRKY家族全基因组鉴定及其表达分析. 园艺学报, 2021, 48(9): 1768-1784. | |
31 | Che Y M, Sun Y J, Lu S C, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. Plant Physiology Journal, 2018, 54(3): 456-464. |
车永梅, 孙艳君, 卢松冲, 等. AtWRKY40参与拟南芥干旱胁迫响应过程. 植物生理学报, 2018, 54(3): 456-464. | |
32 | Chen L G, Zhang L P, Li D B, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2013, 110(21): 1963-1971. |
33 | Tong C C, Zhang C, Fan T T, et al. Cloning and expression analysis of AtWRKY33 gene promoter from Arabidopsis thaliana. Journal of Anhui Agricultural University, 2020, 47(5): 784-788. |
童晨晨, 张乘, 樊婷婷, 等. 拟南芥AtWRKY33基因启动子的克隆及表达分析. 安徽农业大学学报, 2020, 47(5): 784-788. | |
34 | Bakshi M, Oelmüller R. WRKY transcription factors: Lack of many trades in plants. Plant Signaling & Behavior, 2014, 9 (2): e27700. |
35 | Van Aken O, Zhang B, Law S, et al. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiology, 2013, 162: 254-271. |
36 | Hruz T, Laule O, Szabo G, et al. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics, 2008, 2008: 35-39. |
37 | Vanderauwera S, Vandenbroucke K, Inzé A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2012, 109(49): 20113-20118. |
38 | Muhammad A A, Farrukh A, Muhammad A N, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 2018, 226: 12-21. |
[1] | Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines [J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233. |
[2] | Ya-nan LIU, Ren-jie YU, Yan-li GAO, Jun-mei KANG, Qing-chuan YANG, Zhi-hai WU, Zhen WANG. Expression pattern and biological functions of an annexin encoding gene MtANN2 in Medicago truncatula under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 124-134. |
[3] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
[4] | Na-na LI, Tong-ge LIU, Zhi-hui HUANG, Bao-jiang ZHENG, Yu-hong ZHANG. Physiological ecological and secondary metabolic responses of the herbaceous resource plant Thlaspi arvense to salt stress [J]. Acta Prataculturae Sinica, 2022, 31(11): 181-190. |
[5] | Peng ZHANG, Xi REN, Si-yu MENG, Xiao-xing WEI, Gen-sheng BAO. Effects of Epichloё endophyte on seed germination and seedling growth of Stipa purpurea under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(10): 110-121. |
[6] | An-qiao LU, Feng-ju ZHANG, Xing XU, Xue-qin WANG, Shan YAO. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings [J]. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
[7] | Fang-zhen WANG, Cheng-hang YANG, Zi-hua HE, Zi-ru LIN, Hao-yuan ZENG, Qing MA. Analysis of differentially expressed protein kinase related genes in the xerophyte Pugionium cornutum under salt treatment [J]. Acta Prataculturae Sinica, 2021, 30(10): 116-124. |
[8] | Tian TIAN, Hai-jiang WANG, Jin-gang WANG, Yong-qi ZHU, Xiao-yan SHI, Wei-di LI, Wen-rui-yu LI. Effects of nitrogen application on accumulation of organic osmotic regulating substances in forage rapeseed (Brassica napus) under salt stress [J]. Acta Prataculturae Sinica, 2021, 30(10): 125-136. |
[9] | WANG Miao-miao, ZHOU Xiang-rui, LIANG Guo-ling, ZHAO Gui-qin, JIAO Run-an, CHAI Ji-kuan, GAO Xue-mei, LI Juan-ning. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
[10] | Yong HUANG, Meng GUO, Hong-rui ZHANG, Yan ZHOU, He-min LI, Zhi-ming GAO, Pan-pan WANG. Effects of salt stress on seed germination and seedling growth of carnation [J]. Acta Prataculturae Sinica, 2020, 29(12): 105-111. |
[11] | Ju-hong WANG, Sheng-jing SHI, Wen CHEN, Gui-mei GAN, Sai-na CHEN, Zhang-wei LI. Effects of Bacillus subtilis and three actinomycetes on seed germination and seedling growth of Bidens pilosa and Eclipta prostrata under salt stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 112-120. |
[12] | HE Jian-jun, YAO Li-rong, WANG Jun-cheng, BIAN Xiu-xiu, SI Er-jing, YANG Ke, WANG Hua-jun, MA Xiao-le, LI Bao-chun, SHANG Xun-wu, MENG Ya-xiong. Effects of drought and salt stress on seed germination characteristics of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2020, 29(11): 129-140. |
[13] | LI Zhen, YUN Lan, SHI Zi-ying, WANG Jun, ZHANG Chen, GUO Hong-yu, SHENG Yu. Physiological characteristics of Psathyrostachys juncea at seed germination and seedling growth stages under salt stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 119-129. |
[14] | WU Guo-qiang, LI Hui, LEI Cai-rong, LIN Li-yuan, JIN Juan, LI Shan-jia. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress [J]. Acta Prataculturae Sinica, 2019, 28(6): 45-55. |
[15] | SUN Ya-nan, LIN Ru, PAN Xiao-yang, CHEN Yue, TAO Lei, GUO Chang-hong. Cloning and function analysis in tobacco of MsZAT10 from alfalfa [J]. Acta Prataculturae Sinica, 2019, 28(12): 94-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||