Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 106-117.DOI: 10.11686/cyxb2022351
Wei-peng HE1(), Xia-song HU1, Chang-yi LIU1(), Xuan LI1, Xi-lai LI2, Jiang-tao FU3, Hai-jing LU2, Fu-cheng YANG1, Guo-rong LI1
Received:
2022-08-31
Revised:
2022-10-07
Online:
2023-05-20
Published:
2023-03-20
Contact:
Chang-yi LIU
Wei-peng HE, Xia-song HU, Chang-yi LIU, Xuan LI, Xi-lai LI, Jiang-tao FU, Hai-jing LU, Fu-cheng YANG, Guo-rong LI. Impact of the different duration years of grazing prohibition on the mechanical strength characteristics of Elymus nutans roots and its composite systems in the Yellow River source region[J]. Acta Prataculturae Sinica, 2023, 32(5): 106-117.
工况类型 Working conditions | 平均株高 Average plant height (cm) | 平均地径 Average plant diameter at ground surface (mm) |
---|---|---|
未禁牧No grazing prohibition | 50.99±9.86c | 1.45±0.37ab |
1 a禁牧1 a grazing prohibition | 52.67±10.84b | 1.64±0.40a |
4 a禁牧4 a grazing prohibition | 66.65±18.23a | 1.68±0.60a |
10 a禁牧10 a grazing prohibition | 34.65±9.62d | 1.18±0.42b |
Table 1 Aboveground growth indexes of the E. nutans grassland under four different grazing prohibition conditions in the test area
工况类型 Working conditions | 平均株高 Average plant height (cm) | 平均地径 Average plant diameter at ground surface (mm) |
---|---|---|
未禁牧No grazing prohibition | 50.99±9.86c | 1.45±0.37ab |
1 a禁牧1 a grazing prohibition | 52.67±10.84b | 1.64±0.40a |
4 a禁牧4 a grazing prohibition | 66.65±18.23a | 1.68±0.60a |
10 a禁牧10 a grazing prohibition | 34.65±9.62d | 1.18±0.42b |
工况类型 Working conditions | 平均根数Average root number (No.) | 平均含根量Average root content (mg·cm-3) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 942±538c | 476±311b | 11.70±6.98b | 4.90±1.19b |
1 a禁牧1 a grazing prohibition | 1428±778a | 996±581a | 18.51±7.91a | 11.71±5.16a |
4 a禁牧4 a grazing prohibition | 1199±974ab | 861±392a | 11.41±6.12b | 9.10±5.93ab |
10 a禁牧10 a grazing prohibition | 900±251c | 435±151b | 6.10±2.00c | 4.30±2.10b |
Table 2 Underground root growth index of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 平均根数Average root number (No.) | 平均含根量Average root content (mg·cm-3) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 942±538c | 476±311b | 11.70±6.98b | 4.90±1.19b |
1 a禁牧1 a grazing prohibition | 1428±778a | 996±581a | 18.51±7.91a | 11.71±5.16a |
4 a禁牧4 a grazing prohibition | 1199±974ab | 861±392a | 11.41±6.12b | 9.10±5.93ab |
10 a禁牧10 a grazing prohibition | 900±251c | 435±151b | 6.10±2.00c | 4.30±2.10b |
工况类型 Working conditions | 平均根径 Average root diameter (D, mm) | 单根抗拉力Tensile resistance of single root | 单根抗拉强度Tensile strength of single root | ||||
---|---|---|---|---|---|---|---|
平均抗拉力 Average tensile resistance (F, N) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | 平均抗拉强度 Average tensile strength (TN, MPa) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | ||
未禁牧No grazing prohibition | 0.19±0.05 | 2.63±1.20ab | F=38.238D1.646 | 0.9707 | 88.21±11.06a | TN=48.684D-0.354 | 0.6049 |
1 a禁牧1 a grazing prohibition | 0.23±0.04 | 3.05±1.32a | F=19.388D1.768 | 0.8740 | 78.36±23.59a | TN=24.280D-0.740 | 0.7016 |
4 a禁牧4 a grazing prohibition | 0.26±0.11 | 3.02±1.74a | F=14.107D1.564 | 0.8768 | 63.91±24.18b | TN=17.963D-0.836 | 0.7862 |
10 a禁牧10 a grazing prohibition | 0.28±0.09 | 2.26±1.06b | F=14.152D1.463 | 0.9566 | 37.63±7.71c | TN=18.020D-0.537 | 0.7478 |
Table 3 Fitting results of regression equations of tensile resistance and tensile strength of single root of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 平均根径 Average root diameter (D, mm) | 单根抗拉力Tensile resistance of single root | 单根抗拉强度Tensile strength of single root | ||||
---|---|---|---|---|---|---|---|
平均抗拉力 Average tensile resistance (F, N) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | 平均抗拉强度 Average tensile strength (TN, MPa) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | ||
未禁牧No grazing prohibition | 0.19±0.05 | 2.63±1.20ab | F=38.238D1.646 | 0.9707 | 88.21±11.06a | TN=48.684D-0.354 | 0.6049 |
1 a禁牧1 a grazing prohibition | 0.23±0.04 | 3.05±1.32a | F=19.388D1.768 | 0.8740 | 78.36±23.59a | TN=24.280D-0.740 | 0.7016 |
4 a禁牧4 a grazing prohibition | 0.26±0.11 | 3.02±1.74a | F=14.107D1.564 | 0.8768 | 63.91±24.18b | TN=17.963D-0.836 | 0.7862 |
10 a禁牧10 a grazing prohibition | 0.28±0.09 | 2.26±1.06b | F=14.152D1.463 | 0.9566 | 37.63±7.71c | TN=18.020D-0.537 | 0.7478 |
Fig.3 Relation curve between tensile resistance, tensile strength of single root and root diameter of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 土体平均密度Average density of soil mass (g·cm-3) | 土体平均含水率Average moisture content of soil mass (%) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 1.20±0.10 | 1.32±0.12 | 33.31±6.47 | 22.04±3.01 |
1 a禁牧1 a grazing prohibition | 1.14±0.22 | 1.18±0.14 | 36.90±6.20 | 26.19±5.00 |
4 a禁牧4 a grazing prohibition | 1.12±0.21 | 1.04±0.11 | 35.55±6.15 | 26.22±4.29 |
10 a禁牧10 a grazing prohibition | 1.19±0.17 | 1.17±0.12 | 39.95±5.07 | 29.07±5.03 |
Table 4 Soil density and moisture content of E. nutans grassland under four different working conditions in the test area
工况类型 Working conditions | 土体平均密度Average density of soil mass (g·cm-3) | 土体平均含水率Average moisture content of soil mass (%) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 1.20±0.10 | 1.32±0.12 | 33.31±6.47 | 22.04±3.01 |
1 a禁牧1 a grazing prohibition | 1.14±0.22 | 1.18±0.14 | 36.90±6.20 | 26.19±5.00 |
4 a禁牧4 a grazing prohibition | 1.12±0.21 | 1.04±0.11 | 35.55±6.15 | 26.22±4.29 |
10 a禁牧10 a grazing prohibition | 1.19±0.17 | 1.17±0.12 | 39.95±5.07 | 29.07±5.03 |
工况类型 Working conditions | 平均黏聚力c值Average cohesion c value (kPa) | 平均内摩擦角值Average internal friction angle φ value (°) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 26.58±5.86a | 22.91±5.00a | 19.53±2.48 | 20.48±2.48 |
1 a禁牧1 a grazing prohibition | 16.02±1.99ab | 15.37±1.76ab | 19.96±2.69 | 22.07±2.69 |
4 a禁牧4 a grazing prohibition | 13.15±6.78b | 7.45±3.91b | 20.39±2.92 | 21.25±3.54 |
10 a禁牧10 a grazing prohibition | 9.70±1.90b | 6.91±3.24b | 18.95±3.99 | 19.25±2.24 |
Table 5 Shear strength of E. nutans root-soil composite systems under four different working conditions in the test area
工况类型 Working conditions | 平均黏聚力c值Average cohesion c value (kPa) | 平均内摩擦角值Average internal friction angle φ value (°) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 26.58±5.86a | 22.91±5.00a | 19.53±2.48 | 20.48±2.48 |
1 a禁牧1 a grazing prohibition | 16.02±1.99ab | 15.37±1.76ab | 19.96±2.69 | 22.07±2.69 |
4 a禁牧4 a grazing prohibition | 13.15±6.78b | 7.45±3.91b | 20.39±2.92 | 21.25±3.54 |
10 a禁牧10 a grazing prohibition | 9.70±1.90b | 6.91±3.24b | 18.95±3.99 | 19.25±2.24 |
Fig.4 Three dimensional relation curve between root content, root diameter and cohesion of root-soil composite systems under four different working conditions in the test area
指标 Index | 根径 Root diameter | 含根量 Root content | 密度 Density | 含水率 Moisture content | 单根抗拉强度 Single tensile strength |
---|---|---|---|---|---|
黏聚力c值Cohesion c value | 0.352* | 0.592** | 0.369* | -0.456* | 0.486** |
内摩擦角φ值Internal friction angle φ value | -0.068 | 0.040 | -0.020 | -0.074 | 0.153 |
Table 6 Correlation analysis of main influence factors on shear strength of root-soil composite systems under four different working conditions in the test area
指标 Index | 根径 Root diameter | 含根量 Root content | 密度 Density | 含水率 Moisture content | 单根抗拉强度 Single tensile strength |
---|---|---|---|---|---|
黏聚力c值Cohesion c value | 0.352* | 0.592** | 0.369* | -0.456* | 0.486** |
内摩擦角φ值Internal friction angle φ value | -0.068 | 0.040 | -0.020 | -0.074 | 0.153 |
Fig.5 Three dimensional relation curve between density, moisture content and cohesion of root-soil composite systems under four different working conditions in the test area
1 | Gao Y N, Liao L R, Wang J, et al. Effects of grazing exclusion on the fractal characteristics of soil particle size in semi-arid grassland on the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(6): 310-318, 326. |
高雅宁, 廖李容, 王杰, 等. 禁牧对黄土高原半干旱草地土壤粒径多重分形特征的影响. 水土保持学报, 2021, 35(6): 310-318, 326. | |
2 | Xu T W, Zhao X Q, Geng Y Y, et al. Key technologies and optimization model for ecological protection and grass-based livestock husbandry in the source region of the Yellow River. Resources Science, 2020, 42(3): 508-516. |
徐田伟, 赵新全, 耿远月, 等. 黄河源区生态保护与草牧业发展关键技术及优化模式. 资源科学, 2020, 42(3): 508-516. | |
3 | Liu D D, Ju W L, Jin X L, et al. Associated soil aggregate nutrients and controlling factors on aggregate stability in semiarid grassland under different grazing prohibition timeframes. Science of the Total Environment, 2021, 777: 146104. |
4 | Sun J, Liu M, Fu B J, et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 2020, 65(16): 1405-1414. |
5 | Zhang Z C. The above- and below-ground processes of degradation and restoring efficiency of grazing exclusion in typical alpine grasslands on the Tibetan Plateau. Beijing: Beijing Forestry University, 2020. |
张振超. 青藏高原典型高寒草地地上-地下的退化过程和禁牧恢复效果研究. 北京: 北京林业大学, 2020. | |
6 | Zhang J S. Effects of grazing exclusion on plant community composition and carbon storage of alpine meadow in Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2020. |
张建胜. 禁牧对青藏高原高寒草甸植物群落组成和碳储量的影响. 兰州: 兰州大学, 2020. | |
7 | He X N, Dong C X, Geng Y R, et al. Analysis of mechanical property of root soil complex of common slope protection plants. Shanxi Architecture, 2021, 47(8): 68-70. |
何鑫南, 董晨霄, 耿嫣然, 等. 常见护坡植物的根土复合体力学特性分析. 山西建筑, 2021, 47(8): 68-70. | |
8 | Shaurav A, Tanvir M, Eric B, et al. In-situ assessment of soil-root bonding strength to aid in preventing soil erosion. Soil & Tillage Research, 2021, 213: 1-8. |
9 | Liu C Y, Hu X S, Li X L, et al. Relationship between shear strength of root-soil composite systems of alpine grassland and distribution of soil nutrient elements in the source region of the Yellow River, China. Mountain Research, 2020, 38(3): 349-359. |
刘昌义, 胡夏嵩, 李希来, 等. 黄河源区高寒草地根-土复合体抗剪强度与土壤营养元素分布关系. 山地学报, 2020, 38(3): 349-359. | |
10 | Liu Y B, Hu X S, Yu D M, et al. Influence of the roots of mixed-planting species on the shear strength of saline loess soil. Journal of Mountain Science, 2021, 18(3): 806-818. |
11 | Bo F, Zong Q L, Cai H B, et al. Calculation of increased soil shear strength from desert plant roots. Arabian Journal of Geosciences, 2019, 12(16): 1-12. |
12 | Yang F C, Liu C Y, Hu X S, et al. Study on physical and chemical properties and shear strength characteristics of root-soil composite system with different degradation degrees of alpine grassland in the source region of the Yellow River. Arid Zone Research, 2022, 39(2): 560-571. |
杨馥铖, 刘昌义, 胡夏嵩, 等. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究. 干旱区研究, 2022, 39(2): 560-571. | |
13 | Shen Z Y, Liu C Y, Hu X S, et al. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grass land in the source region of the Yellow River. Arid Zone Research, 2021, 38(2): 392-401. |
申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究, 2021, 38(2): 392-401. | |
14 | Liu C Y, Hu X S, Dou Z N, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定. 草业学报, 2017, 26(9): 14-26. | |
15 | Chai Y, Li X L, Yu J F, et al. Effects of different applications of organic fertilizer in degraded alpine meadow on soil aggregates and organic carbon in the source zone of Yellow River. Acta Agrestia Sinica, 2022, 30(7): 1613-1620. |
柴瑜, 李希来, 于金峰, 等. 有机肥施用量对黄河源不同坡向退化高寒草甸土壤团聚体及有机碳的影响. 草地学报, 2022, 30(7): 1613-1620. | |
16 | Xu W Y, Zhang Y P, Duan C W, et al. Spatial variability of soil nutrients in degraded alpine meadows in different regions of the Yellow River. Ecology and Environmental Sciences, 2021, 30(10): 1968-1975. |
徐文印, 张宇鹏, 段成伟, 等. 黄河源不同区域退化高寒草甸土壤养分空间变异研究. 生态环境学报, 2021, 30(10): 1968-1975. | |
17 | Zhou H K, Zhao X Q, Wen J, et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River source region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. |
周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. | |
18 | Xu T, Liu C Y, Hu X S, et al. Study on the mechanical properties of roots and the shear strengths of four halophytic plants in Qaidam Basin. Research of Soil and Water Conservation, 2021, 28(3): 101-110. |
许桐, 刘昌义, 胡夏嵩, 等. 柴达木盆地4种盐生植物根系力学特性及根-土复合体抗剪强度研究. 水土保持研究, 2021, 28(3): 101-110. | |
19 | He W P, Liu C Y, Zhou G Y, et al. A study of the mechanical properties of herbaceous roots and root-soil composite systems in the degraded alpine pasture artificially restored grassland. Hydrogeology & Engineering Geology, 2022, 49(2): 207-218. |
何伟鹏, 刘昌义, 周国英, 等. 退化高寒草原人工恢复植被根系及根-土复合体力学特性研究. 水文地质工程地质, 2022, 49(2): 207-218. | |
20 | Shen Z Y, Li G Y, Liu C Y, et al. Mechanical properties of four plant roots and shear strength of root-soil complex in the source region of the Yellow River. Science of Soil and Water Conservation, 2021(7): 49-52. |
申紫雁, 李光莹, 刘昌义, 等. 黄河源区4种植物根系力学特性及根-土复合体抗剪强度研究. 中国水土保持, 2021(7): 49-52. | |
21 | Zhang Y, Asiya M, Xin X P, et al. Effects of fencing and grazing on the community structure, biomass and forage quality of temperate steppe in Xinjiang. Acta Agrestia Sinica, 2020, 28(3): 815-821. |
张宇, 阿斯娅·曼力克, 辛晓平, 等. 禁牧与放牧对新疆温性草原群落结构、生物量及牧草品质的影响. 草地学报, 2020, 28(3): 815-821. | |
22 | Zhou R, Song M L, Wang Y Q, et al. Effect of Ligularia virgaurea control on plant community of grassland under different grazing modes. Acta Agrestia Sinica, 2022, 30(7): 1819-1828. |
周睿, 宋梅玲, 王玉琴, 等. 不同放牧方式下防除黄帚橐吾对高寒草地植物群落的影响. 草地学报, 2022, 30(7): 1819-1828. | |
23 | Wang H S, Song M L, Wang Y Q, et al. Effects of different restoration methods on Ligularia virgaurea and toxic weed. Chinese Journal of Grassland, 2022, 44(4): 32-39. |
王宏生, 宋梅玲, 王玉琴, 等. 不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响. 中国草地学报, 2022, 44(4): 32-39. | |
24 | Dong Y Q, Sun Z J, An S Z, et al. Effect of short-term grazing exclusion on community characteristics and stability in Artemisia desert on the northern slopes of the Tianshan Mountains. Pratacultural Science, 2018, 35(5): 996-1003. |
董乙强, 孙宗玖, 安沙舟, 等. 短期禁牧对天山北坡蒿类荒漠群落特征及其稳定性的影响. 草业科学, 2018, 35(5): 996-1003. | |
25 | Sun J, Fu B J, Zhao W W, et al. Optimizing grazing exclusion practices to achieve Goal 15 of the sustainable development goals in the Tibetan Plateau. Science Bulletin, 2021, 66(15): 1493-1496. |
26 | Cheng J M, Cheng J, Yang X M, et al. Spatial distribution of carbon density in grassland vegetation of the Loess Plateau of China. Acta Ecologica Sinica, 2012, 32(1): 226-237. |
程积民, 程杰, 杨晓梅, 等. 黄土高原草地植被碳密度的空间分布特征. 生态学报, 2012, 32(1): 226-237. | |
27 | Shui H W, Hasbagan G, Wu H B, et al. Effects of grazing exclusion on community characteristics and productivity of Stellera-dominated degraded grassland in the northern Tibetan Plateau. Acta Prataculturae Sinica, 2020, 29(10): 14-21. |
水宏伟, 干珠扎布, 吴红宝, 等. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响. 草业学报, 2020, 29(10): 14-21. | |
28 | Zhou L H, Hu X S, Liu C Y, et al. Comparison of tensile resistance properties of main roots and lateral roots among four shrub species in Northeast Qinghai-Tibet Plateau. Bulletin of Soil and Water Conservation, 2019, 39(3): 93-100. |
周林虎, 胡夏嵩, 刘昌义, 等. 青藏高原东北部4种灌木主根和侧根抗拉力学特性比较. 水土保持通报, 2019, 39(3): 93-100. | |
29 | Liu Y B, Li S X, Yu D M, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining basin. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 157-166. |
刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验. 农业工程学报, 2018, 34(15): 157-166. | |
30 | Li S, Li F X, Li Z S, et al. Effect of different grazing intensity on plant community and soil property in cultivated grassland in Weining, Guizhou province. Grassland and Turf, 2019, 39(4): 19-24. |
李硕, 李富祥, 李振松, 等. 不同放牧强度对贵州威宁人工草地植被和土壤特性的影响. 草原与草坪, 2019, 39(4): 19-24. | |
31 | Lai J D, Tian K, Zhao Y H, et al. Effect of grazing prohibition on soil properties of degraded meadow in Napahai plateau wetland. Journal of West China Forestry Science, 2013, 42(2): 43-48. |
赖建东, 田昆, 赵一鹤, 等. 禁牧对高原湿地纳帕海退化草甸土壤理化性质的影响. 西部林业科学, 2013, 42(2): 43-48. | |
32 | Qiao R, Cui X X, Lv X F, et al. Effect of enclosure and grazing prohibition on soil properties of degraded grassland. Bulletin of Soil and Water Conservation, 2014, 34(5): 162-165. |
乔荣, 崔向新, 吕新丰, 等. 围封禁牧对退化草原土壤性状的影响. 水土保持通报, 2014, 34(5): 162-165. | |
33 | Asitaiken J, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
34 | Yan C, Hu X S, Li X L, et al. Experimental study on effects of vegetation restoration on physical and mechanical properties of dump slope soil in alpine coal mine areas. Journal of Engineering Geology, 2022, 30(2): 383-393. |
闫聪, 胡夏嵩, 李希来, 等. 高寒矿区排土场植被恢复对边坡土体物理力学性质影响研究. 工程地质学报, 2022, 30(2): 383-393. |
[1] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Min-hao CHEN, Ya-min GAO, Chang-ning LI, Jie BAI, Ming SU. Effect of reducing chemical fertilizer and substitution with microbial fertilizer on the growth of Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(4): 53-61. |
[2] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Drought tolerance of wild Elymus nutans during germination and seedling establishment [J]. Acta Prataculturae Sinica, 2021, 30(9): 76-85. |
[3] | Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism [J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
[4] | ZHANG Tong-rui, LI Fu-cui, LI Hui, JI Shuang-xuan, FAN Zhi-hao, CHEN Yu-feng, CHAO Yue-hui, HAN Lie-bao. Effect of carpet mesh implantation on hybrid turf stability and performance quality [J]. Acta Prataculturae Sinica, 2020, 29(8): 27-36. |
[5] | ZHOU Tao, CHEN Yun, WANG Run-ze, LI Tie, TANG Han, ZHAI Ting-ting, LIU Xiao-hong. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides [J]. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
[6] | LI Tie, WANG Run-ze, CHEN Yun, HE Bing-hui, ZHOU Tao, WU Chen, LIU Xiao-hong. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes [J]. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
[7] | LIU Chang-Yi, HU Xia-Song, DOU Zeng-Ning, LI Xi-Lai, XU Zhi-Wen. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region [J]. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
[8] | DING Wen-Bin, HE Wen-Jian, SHI Dong-Mei, JIANG Guang-Yi, JIANG Ping, CHANG Song-Guo. Effect of drying-wetting condition on attenuation-recovery of soil shear strength of bio-embankment on sloping farmland comprising purple soil [J]. Acta Prataculturae Sinica, 2017, 26(6): 56-67. |
[9] | ZHAO Yu-yu, HUANG De-jun, MAO Zhu-xin, NIE Bin, FU Hua. A study on forage nutritional quality of Elymus nutans from different populations in the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2013, 22(1): 38-45. |
[10] | ZHANG Miao-qing, ZHANG Ji-yu, LIU Zhi-peng, WANG Yan-rong, ZHANG Lei. Cloning and analysis of the MADS-box gene WM8 of Elymus nutans [J]. Acta Prataculturae Sinica, 2012, 21(4): 141-150. |
[11] | ZHANG Miao-qing, WANG Yan-rong, ZHANG Ji-yu, LIU Zhi-peng, ZHANG Lei, NIE Bin, ZHOU Jing. A study on genetic diversity of reproductive characters in Elymus nutans germplasm resources [J]. Acta Prataculturae Sinica, 2011, 20(3): 182-191. |
[12] |
XIE Guo-ping, HU Tian-ming, WANG Quan-zhen, MIAO Yan-jun, Bianbadroma, ZHU Yong, XIONG Xiao-rui. A study on the impact of nitrogen application and harvest time on theseed yield of Tibetan wild Elymus nutans in Lhasa valley, Tibet [J]. Acta Prataculturae Sinica, 2010, 19(2): 89-96. |
[13] | WU Jian-shuang, SHEN Zhen-xi, ZHANG Xian-zhou, FU Gang. Effect of nitrogen fertilizer application on Elymus nutans biomass allocationin an alpine meadow zone on the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2009, 18(6): 113-121. |
[14] | CHEN Zhi-hua, MIAO Jia-min, ZHONG Jin-cheng, MA Xiao, CHEN Shi-yong, ZHANG Xin-quan. Genetic diversity of wild Elymus nutans germplasm detected by SRAP markers [J]. Acta Prataculturae Sinica, 2009, 18(5): 192-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||