Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (4): 53-61.DOI: 10.11686/cyxb2021036
Previous Articles Next Articles
Dong-rong HAN(), Tuo YAO(), Hai-yun LI, Min-hao CHEN, Ya-min GAO, Chang-ning LI, Jie BAI, Ming SU
Received:
2021-01-26
Revised:
2021-03-31
Online:
2022-04-20
Published:
2022-01-25
Contact:
Tuo YAO
Dong-rong HAN, Tuo YAO, Hai-yun LI, Min-hao CHEN, Ya-min GAO, Chang-ning LI, Jie BAI, Ming SU. Effect of reducing chemical fertilizer and substitution with microbial fertilizer on the growth of Elymus nutans[J]. Acta Prataculturae Sinica, 2022, 31(4): 53-61.
处理 Treatment | 株高Plant height (cm) | 茎粗Thick stem (mm) | 干草产量Dry yield (g·m-2) | |||
---|---|---|---|---|---|---|
第1茬First harvest | 第2茬Second harvest | 第1茬First harvest | 第2茬Second harvest | 第1茬First harvest | 第2茬Second harvest | |
CK | 37.67±0.35e | 26.77±0.67g | 1.45±0.04bc | 1.01±0.01bc | 290.20±15.93a | 113.75±10.19ab |
B1 | 37.63±0.58e | 36.77±0.46e | 1.59±0.10bc | 1.19±0.10b | 259.21±7.73ab | 107.78±8.44b |
B2 | 50.80±0.65a | 48.30±0.47a | 2.10±0.08a | 1.68±0.79a | 299.14±13.48a | 128.63±4.48a |
B3 | 50.53±0.79a | 43.00±1.80bc | 2.03±0.04a | 1.66±0.14a | 260.84±21.24ab | 98.31±10.41bc |
B4 | 43.63±0.52cd | 44.90±1.19b | 1.65±0.09bc | 1.25±0.12b | 226.81±9.03bc | 96.40±5.83bc |
B5 | 45.50±0.95bc | 38.80±1.48de | 1.53±0.05bc | 1.09±0.07bc | 190.68±10.66cd | 82.30±4.47cd |
C1 | 42.33±1.33cd | 28.20±1.87g | 1.56±0.06bc | 1.19±0.02b | 220.98±8.24bc | 81.75±3.92cd |
C2 | 44.76±0.24bcd | 38.10±0.67de | 1.53±0.10bc | 1.09±0.04bc | 200.00±6.67cd | 75.43±1.04d |
C3 | 47.07±1.73b | 40.70±0.45cd | 1.67±0.05b | 1.31±0.18b | 175.52±7.48d | 80.86±5.58cd |
C4 | 43.83±0.67cd | 36.97±1.39e | 1.57±0.05bc | 1.23±0.02b | 222.14±7.60bc | 83.70±2.05cd |
C5 | 46.77±0.85b | 32.40±0.83f | 1.23±0.04d | 0.81±0.13c | 192.31±18.62cd | 79.05±1.92cd |
Table 1 Changes in agronomic characteristics of E. nutans
处理 Treatment | 株高Plant height (cm) | 茎粗Thick stem (mm) | 干草产量Dry yield (g·m-2) | |||
---|---|---|---|---|---|---|
第1茬First harvest | 第2茬Second harvest | 第1茬First harvest | 第2茬Second harvest | 第1茬First harvest | 第2茬Second harvest | |
CK | 37.67±0.35e | 26.77±0.67g | 1.45±0.04bc | 1.01±0.01bc | 290.20±15.93a | 113.75±10.19ab |
B1 | 37.63±0.58e | 36.77±0.46e | 1.59±0.10bc | 1.19±0.10b | 259.21±7.73ab | 107.78±8.44b |
B2 | 50.80±0.65a | 48.30±0.47a | 2.10±0.08a | 1.68±0.79a | 299.14±13.48a | 128.63±4.48a |
B3 | 50.53±0.79a | 43.00±1.80bc | 2.03±0.04a | 1.66±0.14a | 260.84±21.24ab | 98.31±10.41bc |
B4 | 43.63±0.52cd | 44.90±1.19b | 1.65±0.09bc | 1.25±0.12b | 226.81±9.03bc | 96.40±5.83bc |
B5 | 45.50±0.95bc | 38.80±1.48de | 1.53±0.05bc | 1.09±0.07bc | 190.68±10.66cd | 82.30±4.47cd |
C1 | 42.33±1.33cd | 28.20±1.87g | 1.56±0.06bc | 1.19±0.02b | 220.98±8.24bc | 81.75±3.92cd |
C2 | 44.76±0.24bcd | 38.10±0.67de | 1.53±0.10bc | 1.09±0.04bc | 200.00±6.67cd | 75.43±1.04d |
C3 | 47.07±1.73b | 40.70±0.45cd | 1.67±0.05b | 1.31±0.18b | 175.52±7.48d | 80.86±5.58cd |
C4 | 43.83±0.67cd | 36.97±1.39e | 1.57±0.05bc | 1.23±0.02b | 222.14±7.60bc | 83.70±2.05cd |
C5 | 46.77±0.85b | 32.40±0.83f | 1.23±0.04d | 0.81±0.13c | 192.31±18.62cd | 79.05±1.92cd |
指标Index | CP | EE | ADF | NDF | PH | TS |
---|---|---|---|---|---|---|
EE | -0.201 | |||||
ADF | 0.464 | -0.164 | ||||
NDF | -0.167 | -0.151 | 0.702** | |||
PH | 0.325 | -0.176 | -0.176 | -0.342 | ||
TS | 0.053 | 0.180 | -0.436 | -0.664* | 0.525 | |
DW | -0.351 | 0.475 | -0.561 | -0.475 | -0.159 | 0.354 |
Table 2 Correlation coefficient matrix of the indices in the first harvest
指标Index | CP | EE | ADF | NDF | PH | TS |
---|---|---|---|---|---|---|
EE | -0.201 | |||||
ADF | 0.464 | -0.164 | ||||
NDF | -0.167 | -0.151 | 0.702** | |||
PH | 0.325 | -0.176 | -0.176 | -0.342 | ||
TS | 0.053 | 0.180 | -0.436 | -0.664* | 0.525 | |
DW | -0.351 | 0.475 | -0.561 | -0.475 | -0.159 | 0.354 |
主成分 Ingredient | 特征值 Eigenvalues | 贡献率Contribution rate (%) | |
---|---|---|---|
方差Variance | 累计Cumulative | ||
1 | 2.860 | 40.851 | 40.851 |
2 | 1.876 | 26.796 | 67.647 |
Table 3 The eigenvalue and variance contribution rate of principal component analysis in the first harvest
主成分 Ingredient | 特征值 Eigenvalues | 贡献率Contribution rate (%) | |
---|---|---|---|
方差Variance | 累计Cumulative | ||
1 | 2.860 | 40.851 | 40.851 |
2 | 1.876 | 26.796 | 67.647 |
处理 Treatment | 主成分 Principal component | 综合得分 Compodite score (F) | 综合排名 Total ranking | 处理 Treatment | 主成分 Principal component | 综合得分 Compodite score (F) | 综合排名 Total ranking | ||
---|---|---|---|---|---|---|---|---|---|
1 (F1) | 2 (F2) | 1 (F1) | 2 (F2) | ||||||
CK | 24.94 | -15.72 | 5.97 | 3 | C1 | 15.50 | -10.60 | 3.49 | 8 |
B1 | 21.28 | -13.13 | 5.18 | 4 | C2 | 14.11 | -8.72 | 3.43 | 9 |
B2 | 25.79 | -13.52 | 6.91 | 1 | C3 | 11.61 | -6.74 | 2.94 | 11 |
B3 | 23.10 | -11.33 | 6.40 | 2 | C4 | 16.27 | -10.07 | 3.95 | 6 |
B4 | 16.62 | -10.09 | 4.09 | 5 | C5 | 13.35 | -7.92 | 3.33 | 10 |
B5 | 13.71 | -7.58 | 3.57 | 7 |
Table 4 Comprehensive scores and rankings of the principal components of different treatments in the first harvest
处理 Treatment | 主成分 Principal component | 综合得分 Compodite score (F) | 综合排名 Total ranking | 处理 Treatment | 主成分 Principal component | 综合得分 Compodite score (F) | 综合排名 Total ranking | ||
---|---|---|---|---|---|---|---|---|---|
1 (F1) | 2 (F2) | 1 (F1) | 2 (F2) | ||||||
CK | 24.94 | -15.72 | 5.97 | 3 | C1 | 15.50 | -10.60 | 3.49 | 8 |
B1 | 21.28 | -13.13 | 5.18 | 4 | C2 | 14.11 | -8.72 | 3.43 | 9 |
B2 | 25.79 | -13.52 | 6.91 | 1 | C3 | 11.61 | -6.74 | 2.94 | 11 |
B3 | 23.10 | -11.33 | 6.40 | 2 | C4 | 16.27 | -10.07 | 3.95 | 6 |
B4 | 16.62 | -10.09 | 4.09 | 5 | C5 | 13.35 | -7.92 | 3.33 | 10 |
B5 | 13.71 | -7.58 | 3.57 | 7 |
指标Index | CP | EE | ADF | NDF | PH | TS | DW | TRL | TRS | TRV | UDW |
---|---|---|---|---|---|---|---|---|---|---|---|
EE | 0.241 | ||||||||||
ADF | -0.257 | 0.005 | |||||||||
NDF | -0.198 | -0.316 | 0.592* | ||||||||
PH | 0.184 | 0.137 | -0.433 | -0.365 | |||||||
TS | 0.198 | 0.389 | 0.043 | -0.292 | 0.656* | ||||||
DW | 0.091 | 0.319 | -0.065 | -0.556 | 0.392 | 0.542 | |||||
TRL | 0.160 | 0.175 | -0.074 | -0.141 | 0.484 | 0.283 | 0.297 | ||||
TRS | 0.142 | -0.094 | 0.076 | 0.080 | 0.120 | -0.095 | 0.229 | 0.667* | |||
TRV | 0.059 | -0.100 | -0.271 | -0.005 | 0.155 | -0.152 | -0.176 | 0.216 | 0.292 | ||
UDW | 0.451 | 0.254 | -0.626* | -0.835 | 0.586* | 0.506 | 0.486 | 0.158 | -0.072 | -0.015 | |
UFW | 0.507 | 0.356 | -0.584* | -0.816 | 0.578* | 0.515 | 0.500 | 0.270 | 0.067 | -0.016 | 0.930** |
Table 5 Correlation coefficient matrix of the indices in the second harvest
指标Index | CP | EE | ADF | NDF | PH | TS | DW | TRL | TRS | TRV | UDW |
---|---|---|---|---|---|---|---|---|---|---|---|
EE | 0.241 | ||||||||||
ADF | -0.257 | 0.005 | |||||||||
NDF | -0.198 | -0.316 | 0.592* | ||||||||
PH | 0.184 | 0.137 | -0.433 | -0.365 | |||||||
TS | 0.198 | 0.389 | 0.043 | -0.292 | 0.656* | ||||||
DW | 0.091 | 0.319 | -0.065 | -0.556 | 0.392 | 0.542 | |||||
TRL | 0.160 | 0.175 | -0.074 | -0.141 | 0.484 | 0.283 | 0.297 | ||||
TRS | 0.142 | -0.094 | 0.076 | 0.080 | 0.120 | -0.095 | 0.229 | 0.667* | |||
TRV | 0.059 | -0.100 | -0.271 | -0.005 | 0.155 | -0.152 | -0.176 | 0.216 | 0.292 | ||
UDW | 0.451 | 0.254 | -0.626* | -0.835 | 0.586* | 0.506 | 0.486 | 0.158 | -0.072 | -0.015 | |
UFW | 0.507 | 0.356 | -0.584* | -0.816 | 0.578* | 0.515 | 0.500 | 0.270 | 0.067 | -0.016 | 0.930** |
主成分 Ingredient | 特征值 Eigenvalues | 贡献率contribution rate (%) | |
---|---|---|---|
方差Variance | 累计Cumulative | ||
1 | 4.650 | 38.750 | 38.750 |
2 | 1.884 | 15.701 | 54.451 |
3 | 1.640 | 13.671 | 68.122 |
4 | 1.008 | 8.399 | 76.521 |
Table 6 The eigenvalue and variance contribution rate of principal component analysis in the second harvest
主成分 Ingredient | 特征值 Eigenvalues | 贡献率contribution rate (%) | |
---|---|---|---|
方差Variance | 累计Cumulative | ||
1 | 4.650 | 38.750 | 38.750 |
2 | 1.884 | 15.701 | 54.451 |
3 | 1.640 | 13.671 | 68.122 |
4 | 1.008 | 8.399 | 76.521 |
处理 Treatment | 第1主成分 Primary principal component (F1) | 第2主成分 Secondary principal component (F2) | 第3主成分 Thirdly principal component (F3) | 第4主成分 Fourth principal component (F4) | 综合得分 Compodite score (F) | 综合排名 Total ranking |
---|---|---|---|---|---|---|
CK | 30.78 | 52.72 | 16.42 | -1.15 | 22.35 | 11 |
B1 | 39.05 | 66.64 | 19.36 | -1.61 | 28.11 | 2 |
B2 | 41.07 | 66.71 | 20.03 | -2.22 | 28.94 | 1 |
B3 | 38.20 | 63.43 | 18.61 | -1.66 | 27.16 | 3 |
B4 | 35.89 | 59.94 | 17.34 | -1.71 | 25.55 | 7 |
B5 | 37.01 | 63.53 | 17.44 | -1.30 | 26.59 | 5 |
C1 | 32.58 | 60.31 | 17.31 | -0.89 | 24.39 | 9 |
C2 | 35.06 | 64.06 | 17.79 | -1.09 | 25.98 | 6 |
C3 | 36.13 | 65.77 | 18.26 | -1.29 | 26.72 | 4 |
C4 | 32.97 | 58.87 | 16.88 | -1.14 | 24.23 | 10 |
C5 | 34.22 | 61.79 | 17.17 | -0.97 | 25.23 | 8 |
Table 7 Comprehensive scores and rankings of the principal components of different treatments in the second harvest
处理 Treatment | 第1主成分 Primary principal component (F1) | 第2主成分 Secondary principal component (F2) | 第3主成分 Thirdly principal component (F3) | 第4主成分 Fourth principal component (F4) | 综合得分 Compodite score (F) | 综合排名 Total ranking |
---|---|---|---|---|---|---|
CK | 30.78 | 52.72 | 16.42 | -1.15 | 22.35 | 11 |
B1 | 39.05 | 66.64 | 19.36 | -1.61 | 28.11 | 2 |
B2 | 41.07 | 66.71 | 20.03 | -2.22 | 28.94 | 1 |
B3 | 38.20 | 63.43 | 18.61 | -1.66 | 27.16 | 3 |
B4 | 35.89 | 59.94 | 17.34 | -1.71 | 25.55 | 7 |
B5 | 37.01 | 63.53 | 17.44 | -1.30 | 26.59 | 5 |
C1 | 32.58 | 60.31 | 17.31 | -0.89 | 24.39 | 9 |
C2 | 35.06 | 64.06 | 17.79 | -1.09 | 25.98 | 6 |
C3 | 36.13 | 65.77 | 18.26 | -1.29 | 26.72 | 4 |
C4 | 32.97 | 58.87 | 16.88 | -1.14 | 24.23 | 10 |
C5 | 34.22 | 61.79 | 17.17 | -0.97 | 25.23 | 8 |
1 | Ma J G, Bowatte S, Wang Y F, et al. Differences in soil ammonia oxidizing bacterial communities under unpalatable (Stellera chamaejasme.)and palatable (Elymus nutans) plants growing on the Qinghai Tibetan Plateau. Soil Biology and Biochemistry, 2020, 144: https://doi.org/10.1016/j.soilbio.2020.107779. |
2 | Lin F, Liu X J, Tong C C, et al. Effects of intercropping on light energy utilization characteristics and productivity of different feed crops. Chinese Journal of Applied Ecology, 2019, 30(10): 3452-3462. |
蔺芳, 刘晓静, 童长春, 等. 间作对不同类型饲料作物光能利用特征及生产能力的影响.应用生态学报, 2019, 30(10): 3452-3462. | |
3 | Kang Y J, Hao Y Y, Shen M, et al. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotoxicology and Environmental Safety, 2016, 130: 279-288. |
4 | Li Y H. Research on the development of chemical fertilizer industry in China. Beijing: Chinese Academy of Agricultural Sciences, 2013. |
李勇海. 中国化肥行业发展对策研究. 北京: 中国农业科学院, 2013. | |
5 | National Bureau of Statistics. China Statistical Yearbook-2018. [2019-04-06]. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. |
国家统计局.中国统计年鉴-2018. [2019-04-06]. http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. | |
6 | Wang J B, Sun Y X, Li H Y, et al. Effects of bio-organic fertilizer and partial substitution of chemical fertilizer on wheat yield. Chinese Agricultural Science Bulletin, 2020, 36(36): 6-11. |
王家宝, 孙义祥, 李虹颖, 等. 生物有机肥用量及部分替代化肥对小麦产量效应的研究. 中国农学通报, 2020, 36(36): 6-11. | |
7 | Li H Y, Jiang Y M, Yao T, et al. Isolation, screening, identification and growth promoting characteristics of plant growth promoting rhizobacteria of vegetable crops. Journal of Plant Protection, 2018, 45(4): 836-845. |
李海云, 蒋永梅, 姚拓, 等. 蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定. 植物保护学报, 2018, 45(4): 836-845. | |
8 | Wen C, Shan Y M, Jia W X, et al. Effects of bio-fertilizers on vegetation characteristics and stoichiometry of Leymus chinensis. Pratacultural Science, 2018, 35(9): 2192-2200. |
温超, 单玉梅, 贾伟星, 等. 微生物肥对羊草植被特征和化学计量学的影响. 草业科学, 2018, 35(9): 2192-2200. | |
9 | Li Y B, Li Y L, Guan G H, et al. Screening, identification of plant growth promoting rhizobacteria and its effect on reducing fertilization while increasing efficiency in wheat (Triticum asetivum). Journal of Agricultural Biotechnology, 2020, 28(8): 1471-1476. |
李永斌, 李云龙, 关国华, 等. 植物根际促生菌的筛选、鉴定及其对小麦的减肥增产效果. 农业生物技术学报, 2020, 28(8): 1471-1476. | |
10 | Zhang X M, Cao Y R, Shen W Z, et al. Effects of microbial fertilizer on soil secondary salinization and tomato production in protected cultivation. Soil and Fertilizer Sciences in China, 2019(5): 119-126. |
张绪美, 曹亚茹, 沈文忠, 等. 微生物肥对设施土壤次生盐渍化和番茄生产的影响. 中国土壤与肥料, 2019(5): 119-126. | |
11 | Yao Z Y, Li J, Song L Z, et al. Study on the effect of cross sowing of Elymus nutans and Medicago sativa in different periods. Acta Agrestia Sinica, 2020, 28(5): 1454-1459. |
姚泽英, 李军, 宋连昭, 等. 垂穗披碱草与紫花苜蓿不同时期交叉混播效果研究. 草地学报, 2020, 28(5): 1454-1459. | |
12 | Li X K, Lu J W, Chen F. Rrimary study on fertilizer application of forage. Acta Prataculturae Sinica, 2008(2): 136-142. |
李小坤, 鲁剑巍, 陈防. 牧草施肥研究进展. 草业学报, 2008(2): 136-142. | |
13 | Wang P, Wang P, Sun W B, et al. Comprehensive evaluation of drought resistance of eight Elymus germplasms at seedling stage. Acta Agrestia Sinica, 2020, 28(2): 397-404. |
王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价. 草地学报, 2020, 28(2): 397-404. | |
14 | Li H Y, Qiu Y Z, Tuo Y, et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil & Tillage Research, 2020, 199: https://doi.org/10.1016/j.still.2020.104577. |
15 | Wang G J, Chai Q, Zhang Y X, et al. Effects of maize special biofertilizer on maize growth in arid area. Acta Agrestia Sinica, 2015, 23(1): 173-179. |
王国基, 柴强, 张玉霞, 等. 干旱区玉米专用菌肥对玉米生长特性的影响. 草地学报, 2015, 23(1): 173-179. | |
16 | Chen L, Sun G Z, Yao T, et al. Effects of chemical fertilizer partly replaced by microbial fertilizer on maize growth and soil microorganism in arid area. Journal of Arid Land Resources and Environment, 2016, 30(7): 108-113. |
陈龙, 孙广正, 姚拓, 等. 干旱区微生物肥料替代部分化肥对玉米生长及土壤微生物的影响. 干旱区资源与环境, 2016, 30(7): 108-113. | |
17 | Ban Q, Huang L K, Zhang X Q, et al. Agronomic traits of 15 annual Ixeris polycephala varieties in the southwest of Sichuan Province. Acta Prataculturae Sinica, 2016, 25(2): 37-46. |
班骞, 黄琳凯, 张新全, 等. 15个苦荬菜新品种(系)在川西南地区农艺性状综合评价. 草业学报, 2016, 25(2): 37-46. | |
18 | Sakshi P, Neelam C, Diksha G. Effect of malting on nutritional profile of alfalfa seeds and development of value added fermented products. International Journal of Fermented Foods, 2019, 8(2): 482-488. |
19 | Zhou H, Xia D, He Y Q. Rice grain quality-traditional traits for high quality rice and health-plus substances. Molecular Breeding: New Strategies in Plant Improvement, 2019, 40(45): 1-17. |
20 | Liu Q F, Xiong G R, Mao Z C, et al. Analyses for the colonization ability of Bacillus subtilis XF-1 in the rhizosphere. Journal of Plant Protection, 2012, 39(5): 425-430. |
刘庆丰, 熊国如, 毛自朝, 等. 枯草芽孢杆菌XF-1的根围定殖能力分析. 植物保护学报, 2012, 39(5): 425-430. | |
21 | Chen C, Bauske E M, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 1995, 5(1): 83-91. |
22 | Sun Z, Zheng L, Qiu H B. Research advances on colonization of plant growth-promoting rhizobacteria. Biotechnology Bulletin, 2017, 33(2): 8-15. |
孙真, 郑亮, 邱浩斌. 植物根际促生细菌定殖研究进展. 生物技术通报, 2017, 33(2): 8-15. | |
23 | Yuan J, Zhang N, Huang Q W, et al. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 2015, 5: https://doi.org/10.1038/srep13438. |
24 | Pang Z Q, Yu D Q. Plant root system-microbial interaction system under drought stress and its application. Plant Physiology Journal, 2020, 56(2): 109-126. |
庞志强, 余迪求. 干旱胁迫下的植物根系-微生物互作体系及其应用. 植物生理学报, 2020, 56(2): 109-126. | |
25 | Chen X B, Hu Y J, Qin H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem:A review. Chinese Journal of Applied Ecology, 2020, 31(3): 1033-1042. |
陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制. 应用生态学报, 2020, 31(3): 1033-1042. | |
26 | Xu R R, Chang S H, Jia Q M, et al. Effects of nitrogen application and utilization methods on the yield, quality and water use of grass-legume mixed grassland in Loess Plateau. Acta Agrestia Sinica, 2020, 28(6): 1744-1755. |
徐然然, 常生华, 贾倩民, 等. 施氮和利用方式对黄土高原禾豆混播草地产量、品质和水分利用的影响. 草地学报, 2020, 28(6): 1744-1755. | |
27 | Yanni Y G, Rizk R Y, E-l Fattah F K, et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifoliiwith rice roots. Australian Journal Plant Physiology, 2001, 28: 845-870. |
28 | Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013, 22(5): 104-112. | |
29 | Li F F, Zhang F F, Wang X Z, et al. Effects of cutting date and crop growth stage on alfalfa silage quality. Acta Prataculturae Sinica, 2019, 28(12): 137-148. |
李菲菲, 张凡凡, 王旭哲, 等. 刈割茬次和生育期对苜蓿青贮品质的影响. 草业学报, 2019, 28(12): 137-148. |
[1] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Shu-chao HUANG, Yan-shan YANG, Ya-min GAO, Chang-ning LI, Yin-cui ZHANG. Effects of combined application of microbial fertilizer and chemical fertilizer on the growth of Lolium perenne [J]. Acta Prataculturae Sinica, 2022, 31(3): 136-143. |
[2] | Ji-cheng SHEN, Lei WANG, Cai-xia ZHAO, Fa-hui YE, Shi-kai LV, De-mei LIU, Rui-juan LIU, Huai-gang ZHANG, Wen-jie CHEN. Analysis of the grain related traits of 77 naked oat varieties [J]. Acta Prataculturae Sinica, 2022, 31(3): 156-167. |
[3] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[4] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[5] | Qiang XING, Jun QIN, Yong-hong HU. Effects of different trampling intensities on three species of warm season turfgrass [J]. Acta Prataculturae Sinica, 2022, 31(2): 52-61. |
[6] | Xin-ming WU, Zhi-hong FANG, Hui-wu CHI, Hui-li JIA, Jian-ning LIU, Yong-hong SHI, Xue-min WANG. Comparison of 30 maize (Zea mays) varieties for food and feed in the Yanmenguan area [J]. Acta Prataculturae Sinica, 2022, 31(1): 205-216. |
[7] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Drought tolerance of wild Elymus nutans during germination and seedling establishment [J]. Acta Prataculturae Sinica, 2021, 30(9): 76-85. |
[8] | Yi XIAO, Zhong-fu YANG, Gang NIE, Jia-ting HAN, Yang SHUAI, Xin-quan ZHANG. Multi-trait evaluation of yield and nutritive value of 12 Lolium multiflorum varieties or lines in Chengdu Plain [J]. Acta Prataculturae Sinica, 2021, 30(5): 174-185. |
[9] | Rui WU, Wen-hui LIU, Yong-chao ZHANG, Yan QIN, Xiao-xing WEI, Min-jie LIU. A study of the correlation between seed shattering and agronomic traits of Elymus sibiricus on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 130-139. |
[10] | Yu-lei JIA, Zhen LIAO, Li-fang WANG, Jian-chao BU, Biao-sheng LIN, Hui LIN, De-wei SU, Guo-dong LU, Zhan-xi LIN. Effects of chemical fertilizer reduction and co-application with a JUNCAO nitrogen-fixing biofertilizer on growth and nutritional quality of Pennisetum giganteum and soil nutrient status [J]. Acta Prataculturae Sinica, 2021, 30(3): 215-223. |
[11] | Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district [J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114. |
[12] | Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism [J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
[13] | Wei ZHANG, Qing-ping ZHOU, You-jun CHEN, Jing PAN, Xiao-ming JIN, Wan-bin SUN, Zhi-feng JIA. Comparison of production performance and forage quality of ten introduced oat varieties in Hulunbuir, China [J]. Acta Prataculturae Sinica, 2021, 30(12): 129-142. |
[14] | Tenzin Tarchen, Purna Bhadra Chapagain, Shankar Raj Pant, Jiebu, Dunzhu Gesang, Shao-feng CHEN. Growth characteristics and nutritive value of multiple oat varieties in mountainous Northern Nepal [J]. Acta Prataculturae Sinica, 2021, 30(10): 73-82. |
[15] | Hai-xia HUANG, Qi-qi YANG, Peng CUI, Gang LU, Guo-jun HAN. Changes in morphological and physiological characteristics of Gymnocarposprzewalskii roots in response to water stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 197-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||