Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 147-158.DOI: 10.11686/cyxb2022183
Ji-kuan CHAI(), Ze-liang JU, Gui-qin ZHAO()
Received:
2022-04-20
Revised:
2022-06-20
Online:
2023-05-20
Published:
2023-03-20
Contact:
Gui-qin ZHAO
Ji-kuan CHAI, Ze-liang JU, Gui-qin ZHAO. Screening of internal reference genes of Lactobacillus strain OL77 and determination of CspP expression patterns under low-temperature and low-pH stress[J]. Acta Prataculturae Sinica, 2023, 32(5): 147-158.
基因名 Gene symbol | 引物序列(5′-3′正向/反向) Primer sequence (5′-3′,forward/reverse) | 产物长度 Product length (bp) | 扩增效率 Amplification efficiency (%) |
---|---|---|---|
tufA | GAGAAGCGTCACTATGCCCA/CACCAACTTGACGTGCCAAC | 166 | 101 |
rpoD | GGTGTTGGTGGCTATCCCAA/GGTGTTGGTGGCTATCCCAA | 120 | 98 |
recA | GGTGTTGGTGGCTATCCCAA/GGTGTTGGTGGCTATCCCAA | 114 | 96 |
Ldh | TCGTCCTACACCGACAATGC/AGTAGCCGAAATGGCGCTTA | 151 | 99 |
GyrA | ACCGGAATTGCTGTTGGAATG/CATCAGGTCGGCTGTGGTAG | 114 | 100 |
GyrB | TCTACCCGGAAAGTTGGCAG/TGAAGCTTTCCCCACGTTCA | 166 | 98 |
GAPDH | TTGAATTGACCATGAGCTGTATC/TCGGACGTATTGGTCGTTTA | 142 | 106 |
6PGDH | CTTCTTTGGCGATACAATTCG/CTAATGCGCCTAATTCACCA | 98 | 103 |
CspP1 | TGTAATAGATTACCCCTTGT/TTCTTGTGATTCCCCAGATT | 164 | 99 |
CspP2 | AACGACTGTTGCTTGTTCC/GCAAGTGTCAGGGTTTCTCT | 111 | 98 |
Table 1 Candidate internal reference genes and primer sequences
基因名 Gene symbol | 引物序列(5′-3′正向/反向) Primer sequence (5′-3′,forward/reverse) | 产物长度 Product length (bp) | 扩增效率 Amplification efficiency (%) |
---|---|---|---|
tufA | GAGAAGCGTCACTATGCCCA/CACCAACTTGACGTGCCAAC | 166 | 101 |
rpoD | GGTGTTGGTGGCTATCCCAA/GGTGTTGGTGGCTATCCCAA | 120 | 98 |
recA | GGTGTTGGTGGCTATCCCAA/GGTGTTGGTGGCTATCCCAA | 114 | 96 |
Ldh | TCGTCCTACACCGACAATGC/AGTAGCCGAAATGGCGCTTA | 151 | 99 |
GyrA | ACCGGAATTGCTGTTGGAATG/CATCAGGTCGGCTGTGGTAG | 114 | 100 |
GyrB | TCTACCCGGAAAGTTGGCAG/TGAAGCTTTCCCCACGTTCA | 166 | 98 |
GAPDH | TTGAATTGACCATGAGCTGTATC/TCGGACGTATTGGTCGTTTA | 142 | 106 |
6PGDH | CTTCTTTGGCGATACAATTCG/CTAATGCGCCTAATTCACCA | 98 | 103 |
CspP1 | TGTAATAGATTACCCCTTGT/TTCTTGTGATTCCCCAGATT | 164 | 99 |
CspP2 | AACGACTGTTGCTTGTTCC/GCAAGTGTCAGGGTTTCTCT | 111 | 98 |
项目Item | tufA | rpoD | recA | Ldh | GyrA | GyrB | GAPDH | 6PGDH |
---|---|---|---|---|---|---|---|---|
pH | ||||||||
6.0 | 24.4 | 27.8 | 21.2 | 25.6 | 21.7 | 21.4 | 24.4 | 24.4 |
5.0 | 24.4 | 27.7 | 22.2 | 26.9 | 21.3 | 20.4 | 23.3 | 24.4 |
4.0 | 24.5 | 28.8 | 22.1 | 26.8 | 21.1 | 21.1 | 23.4 | 24.5 |
温度Temperature (℃) | ||||||||
25 | 24.7 | 27.3 | 22.3 | 24.4 | 20.5 | 20.8 | 21.3 | 24.7 |
15 | 24.8 | 24.5 | 22.1 | 24.9 | 21.1 | 21.0 | 20.7 | 24.8 |
5 | 24.6 | 22.0 | 22.5 | 24.8 | 20.5 | 21.3 | 21.9 | 24.6 |
均值Average | 24.6 | 26.4 | 22.1 | 25.6 | 21.0 | 21.0 | 22.5 | 24.6 |
标准差Standard deviation (SD) | 0.6 | 2.6 | 0.8 | 1.7 | 1.2 | 0.8 | 2.5 | 0.6 |
变异系数Coefficient of variation (CV, %) | 2.4 | 10.0 | 3.4 | 6.5 | 5.9 | 3.7 | 11.3 | 2.4 |
Table 2 Expression levels of 8 candidate internal reference genes (Cq)
项目Item | tufA | rpoD | recA | Ldh | GyrA | GyrB | GAPDH | 6PGDH |
---|---|---|---|---|---|---|---|---|
pH | ||||||||
6.0 | 24.4 | 27.8 | 21.2 | 25.6 | 21.7 | 21.4 | 24.4 | 24.4 |
5.0 | 24.4 | 27.7 | 22.2 | 26.9 | 21.3 | 20.4 | 23.3 | 24.4 |
4.0 | 24.5 | 28.8 | 22.1 | 26.8 | 21.1 | 21.1 | 23.4 | 24.5 |
温度Temperature (℃) | ||||||||
25 | 24.7 | 27.3 | 22.3 | 24.4 | 20.5 | 20.8 | 21.3 | 24.7 |
15 | 24.8 | 24.5 | 22.1 | 24.9 | 21.1 | 21.0 | 20.7 | 24.8 |
5 | 24.6 | 22.0 | 22.5 | 24.8 | 20.5 | 21.3 | 21.9 | 24.6 |
均值Average | 24.6 | 26.4 | 22.1 | 25.6 | 21.0 | 21.0 | 22.5 | 24.6 |
标准差Standard deviation (SD) | 0.6 | 2.6 | 0.8 | 1.7 | 1.2 | 0.8 | 2.5 | 0.6 |
变异系数Coefficient of variation (CV, %) | 2.4 | 10.0 | 3.4 | 6.5 | 5.9 | 3.7 | 11.3 | 2.4 |
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(0.06) | tufA(0.13) | GyrA(0.23) | 6PGDH(0.33) | recA(0.54) | GAPDH(1.34) | GyrB(1.34) | rpoD(2.78) |
5.0 | GyrA(0.31) | rpoD(0.42) | GyrB(0.51) | Ldh(0.62) | 6PGDH(0.70) | tufA(1.14) | recA(1.53) | GAPDH(1.80) |
4.0 | Ldh(0.03) | GyrA(0.03) | tufA(0.08) | recA(0.48) | GyrB(1.11) | 6PGDH(1.30) | rpoD(1.69) | GAPDH(2.13) |
温度Temperature (℃) | ||||||||
25 | tufA(0.22) | 6PGDH(0.42) | Ldh(0.62) | rpoD(0.64) | GyrB(0.73) | recA(0.77) | GyrA(0.94) | GAPDH(1.57) |
15 | GyrB(0.11) | Ldh(0.69) | tufA(0.90) | recA(1.00) | 6PGDH(1.05) | GAPDH(1.43) | rpoD(1.67) | GyrA(1.88) |
5 | Ldh(0.10) | recA(0.43) | tufA(0.45) | 6PGDH(0.48) | GyrB(0.48) | rpoD(0.90) | GyrA(1.29) | GAPDH(2.32) |
总体Total | GyrB(0.26) | GyrA(0.34) | 6PGDH(0.57) | Ldh(0.60) | tufA(0.73) | GAPDH(0.73) | recA(0.87) | rpoD(0.92) |
Table 3 Stability analysis of candidate internal reference genes based on NormFinder
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(0.06) | tufA(0.13) | GyrA(0.23) | 6PGDH(0.33) | recA(0.54) | GAPDH(1.34) | GyrB(1.34) | rpoD(2.78) |
5.0 | GyrA(0.31) | rpoD(0.42) | GyrB(0.51) | Ldh(0.62) | 6PGDH(0.70) | tufA(1.14) | recA(1.53) | GAPDH(1.80) |
4.0 | Ldh(0.03) | GyrA(0.03) | tufA(0.08) | recA(0.48) | GyrB(1.11) | 6PGDH(1.30) | rpoD(1.69) | GAPDH(2.13) |
温度Temperature (℃) | ||||||||
25 | tufA(0.22) | 6PGDH(0.42) | Ldh(0.62) | rpoD(0.64) | GyrB(0.73) | recA(0.77) | GyrA(0.94) | GAPDH(1.57) |
15 | GyrB(0.11) | Ldh(0.69) | tufA(0.90) | recA(1.00) | 6PGDH(1.05) | GAPDH(1.43) | rpoD(1.67) | GyrA(1.88) |
5 | Ldh(0.10) | recA(0.43) | tufA(0.45) | 6PGDH(0.48) | GyrB(0.48) | rpoD(0.90) | GyrA(1.29) | GAPDH(2.32) |
总体Total | GyrB(0.26) | GyrA(0.34) | 6PGDH(0.57) | Ldh(0.60) | tufA(0.73) | GAPDH(0.73) | recA(0.87) | rpoD(0.92) |
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(0.28) | 6PGDH(0.35) | tufA(0.40) | GyrA(0.49) | recA(0.58) | GAPDH(1.04) | GyrB(1.44) | rpoD(2.89) |
5.0 | rpoD(0.32) | 6PGDH(0.42) | Ldh(0.50) | GyrA(0.52) | GyrB(0.65) | tufA(0.76) | recA(1.65) | GAPDH(1.91) |
4.0 | tufA(0.23) | Ldh(0.36) | GyrA(0.41) | recA(0.50) | 6PGDH(0.87) | rpoD(1.51) | GyrB(1.69) | GAPDH(2.34) |
温度Temperature (℃) | ||||||||
25 | tufA(0.37) | 6PGDH(0.50) | rpoD(0.67) | Ldh(0.74) | GyrB(0.87) | recA(0.98) | GAPDH(1.19) | GyrA(1.20) |
15 | GyrB(0.26) | tufA(0.53) | recA(0.63) | 6PGDH(0.75) | Ldh(0.92) | GAPDH(1.62) | rpoD(2.06) | GyrA(2.22) |
5 | Ldh(0.27) | recA(0.47) | tufA(0.56) | 6PGDH(0.58) | GyrB(0.62) | rpoD(0.97) | GyrA(1.22) | GAPDH(2.20) |
总体Total | tufA(0.46) | Ldh(0.60) | 6PGDH(0.62) | GyrB(0.95) | GyrA(1.24) | GAPDH(1.98) | recA(2.08) | rpoD(2.19) |
Table 4 SD value of candidate internal reference genes
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(0.28) | 6PGDH(0.35) | tufA(0.40) | GyrA(0.49) | recA(0.58) | GAPDH(1.04) | GyrB(1.44) | rpoD(2.89) |
5.0 | rpoD(0.32) | 6PGDH(0.42) | Ldh(0.50) | GyrA(0.52) | GyrB(0.65) | tufA(0.76) | recA(1.65) | GAPDH(1.91) |
4.0 | tufA(0.23) | Ldh(0.36) | GyrA(0.41) | recA(0.50) | 6PGDH(0.87) | rpoD(1.51) | GyrB(1.69) | GAPDH(2.34) |
温度Temperature (℃) | ||||||||
25 | tufA(0.37) | 6PGDH(0.50) | rpoD(0.67) | Ldh(0.74) | GyrB(0.87) | recA(0.98) | GAPDH(1.19) | GyrA(1.20) |
15 | GyrB(0.26) | tufA(0.53) | recA(0.63) | 6PGDH(0.75) | Ldh(0.92) | GAPDH(1.62) | rpoD(2.06) | GyrA(2.22) |
5 | Ldh(0.27) | recA(0.47) | tufA(0.56) | 6PGDH(0.58) | GyrB(0.62) | rpoD(0.97) | GyrA(1.22) | GAPDH(2.20) |
总体Total | tufA(0.46) | Ldh(0.60) | 6PGDH(0.62) | GyrB(0.95) | GyrA(1.24) | GAPDH(1.98) | recA(2.08) | rpoD(2.19) |
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(1.00) | tufA(2.21) | 6PGDH(2.83) | GyrA(3.22) | recA(5.00) | GAPDH(6.00) | GyrB(7.00) | rpoD(8.00) |
5.0 | rpoD(2.00) | GyrA(2.11) | Ldh(2.45) | 6PGDH(2.51) | GyrB(3.87) | tufA(6.00) | recA(7.00) | GAPDH(8.00) |
4.0 | Ldh(1.19) | tufA(2.06) | GyrA(2.06) | recA(4.00) | 6PGDH(5.48) | GyrB(5.69) | rpoD(6.74) | GAPDH(8.00) |
温度Temperature (℃) | ||||||||
25 | tufA(1.41) | 6PGDH(1.68) | Ldh(2.45) | rpoD(3.94) | recA(4.82) | GyrB(5.48) | GyrA(7.24) | GAPDH(7.74) |
15 | GyrB(1.32) | tufA(2.06) | Ldh(3.16) | 6PGDH(3.16) | recA(3.72) | GAPDH(6.00) | rpoD(7.00) | GyrA(8.00) |
5 | Ldh(1.00) | recA(1.68) | 6PGDH(3.46) | tufA(4.05) | GyrB(4.47) | rpoD(5.73) | GyrA(7.00) | GAPDH(8.00) |
总体Total | GyrB(2.00) | 6PGDH(2.06) | Ldh(2.21) | tufA(2.94) | GyrA(3.76) | GAPDH(6.00) | recA(7.00) | rpoD(8.00) |
Table 5 RefFinder based candidate internal reference gene stability
项目 Item | 排序Rank | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
pH | ||||||||
6.0 | Ldh(1.00) | tufA(2.21) | 6PGDH(2.83) | GyrA(3.22) | recA(5.00) | GAPDH(6.00) | GyrB(7.00) | rpoD(8.00) |
5.0 | rpoD(2.00) | GyrA(2.11) | Ldh(2.45) | 6PGDH(2.51) | GyrB(3.87) | tufA(6.00) | recA(7.00) | GAPDH(8.00) |
4.0 | Ldh(1.19) | tufA(2.06) | GyrA(2.06) | recA(4.00) | 6PGDH(5.48) | GyrB(5.69) | rpoD(6.74) | GAPDH(8.00) |
温度Temperature (℃) | ||||||||
25 | tufA(1.41) | 6PGDH(1.68) | Ldh(2.45) | rpoD(3.94) | recA(4.82) | GyrB(5.48) | GyrA(7.24) | GAPDH(7.74) |
15 | GyrB(1.32) | tufA(2.06) | Ldh(3.16) | 6PGDH(3.16) | recA(3.72) | GAPDH(6.00) | rpoD(7.00) | GyrA(8.00) |
5 | Ldh(1.00) | recA(1.68) | 6PGDH(3.46) | tufA(4.05) | GyrB(4.47) | rpoD(5.73) | GyrA(7.00) | GAPDH(8.00) |
总体Total | GyrB(2.00) | 6PGDH(2.06) | Ldh(2.21) | tufA(2.94) | GyrA(3.76) | GAPDH(6.00) | recA(7.00) | rpoD(8.00) |
1 | Derzelle S, Hallet B, Ferain T, et al. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Applied and Environmental Microbiology, 2003, 69(7): 4285-4290. |
2 | Fernandez M M L, De R H A P, De V G F. Survival rate and enzyme activities of Lactobacillus acidophilus following frozen storage. Cryobiology, 1998, 36(4): 315-319. |
3 | Saarela M, Virkajärvi I, Alakomi H L, et al. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. Journal of Applied Microbiology, 2005, 99(6): 1330-1339. |
4 | Wang Y, Corrieu G, Béal C. Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. Journal of Dairy Science, 2005, 88(1): 21-29. |
5 | Gachon C, Mingam A, Charrier B. Real-time PCR: What relevance to plant studies? Journal of Experimental Botany, 2004, 55(402): 1445-1454. |
6 | Udvardi M K, Czechowski T, Scheible W R. Eleven golden rules of quantitative RT-PCR. The Plant Cell, 2008, 20(7): 1736-1737. |
7 | Kozera B, Rapacz M. Reference genes in real-time PCR. Journal of Applied Genetics, 2013, 54(4): 391-406. |
8 | Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9): 45-46. |
9 | Jain M, Nijhawan A, Tyagi A, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem and Biophysical Research Communication, 2006, 345(2): 646-651. |
10 | Dheda K, Huggett J F, Chang J S, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry, 2005, 344(1): 141-143. |
11 | Jones P G, Inouye M. The cold-shock response-A hot topic. Molecular Microbiology, 1994, 11(4): 811-818. |
12 | Goldstein J, Pollitt N S, Inouye M. Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 283-287. |
13 | Yamanaka K, Mitani T, Ogura T, et al. Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Molecular Microbiology, 1994, 13(2): 301-312. |
14 | Hebraud M, Dubois E, Potier P, et al. Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. Journal of Bacteriology, 1994, 176(13): 4017-4024. |
15 | Willimsky G, Bang H, Fischer G, et al. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. Journal of Bacteriology, 1992, 174(20): 6326-6335. |
16 | Graumann P, Schröder K, Schmid R, et al. Cold shock stress-induced proteins in Bacillus subtilis. Journal of Bacteriology, 1996, 178(15): 4611-4619. |
17 | Derzelle S, Hallet B, Ferain T, et al. Cold shock induction of the cspL gene in Lactobacillus plantarum involves transcriptional regulation. Journal of Bacteriology, 2002, 184(19): 5518-5523. |
18 | Mayo B, Derzelle S, Fernández M, et al. Cloning and characterization of cspL and cspP, two cold-inducible genes from Lactobacillus plantarum. Journal of Bacteriology, 1997, 179(9): 3039-3042. |
19 | Phadtare S. Recent developments in bacterial cold-shock response. Current Issues in Molecular Biology, 2004, 6(2): 125-136. |
20 | Wilkins J C, Homer K A, Beighton D. Altered protein expression of streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Applied and Environmental Microbiology, 2001, 67(8): 3396-3405. |
21 | Zhang L W, Liu C, Zhang Y H. Effect of over expression of cold shock protein on the fermentation properties of lactic acid bacteria. China Dairy Industry, 2018, 46(10): 15-18. |
张李伟, 刘畅, 张英华. 高效表达冷休克蛋白的乳酸菌发酵体系质构特性分析. 中国乳品工业, 2018, 46(10): 15-18. | |
22 | Yamamoto N, Aaano R, Yoshii H, et al. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Applied Microbiology & Biotechnology, 2011, 90(4): 1501-1510. |
23 | Zhou Y, Drouin P, Lafrenière C. Effect of temperature (5-25 ℃) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. Journal of Applied Microbiology, 2016, 121(3): 657-671. |
24 | Zhang J, Guo G, Chen L, et al. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oat-common vetch mixed silage on the Tibetan plateau. Animal Science Journal, 2015, 86: 595-602. |
25 | Zhang M, Lv H X, Tan Z F, et al. Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria. Animal Science Journal, 2017, 88(2): 277-285. |
26 | Lin D D, Ju Z L, Chai J K, et al. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
蔺豆豆, 琚泽亮, 柴继宽, 等. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定. 草业学报, 2022, 31(5): 103-114. | |
27 | Jarošová J, Kundu J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biology, 2010, 10(1): 146-155. |
28 | Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): 31-34. |
29 | Yang Z M, Chen Y, Hu B Y, et al. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS One, 2015, 10(3): 119-127. |
30 | Migocka M, Papierniak A. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Molecular Breeding, 2011, 28(3): 343-357. |
31 | Silver N, Best S, Jiang J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 2006, 7(1): 33-40. |
32 | Ruijter J M, Ramakers C, Hoogaars W M H, et al. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 2009, 37(6): 45-55. |
33 | Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR date by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): 1-11. |
34 | Muck R E, Nadeau E M G, Mcallister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
35 | Rapacz M, Stępień A, Skorupa K. Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): The effects of developmental stage and leaf age. Acta Physiologiae Plantarum, 2012, 34(5): 1723-1733. |
36 | Wrzesińska B, Kierzek R, Obrępalska-Stęplowska A. Evaluation of six commonly used reference genes for gene expression studies in herbicide-resistant Avena fatua biotypes. Weed Research, 2016, 56(4): 284-292. |
37 | Mallona I, Lischewski S, Weiss J, et al. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biology, 2010, 10(1): 4-12. |
38 | Han X J, Lu M Z, Chen Y C, et al. Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS One, 2012, 7(8): 1-10. |
39 | Chao W S, Doğramaci M, Foley M E, et al. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula). PLoS One, 2012, 7(8): 42-53. |
40 | Lin X Z, He Z G, Li W X, et al. Validation of reference genes for real-time quantitative polymerase chain reaction analysis in Lactobacillus plantarum R23 under sulfur dioxide stress conditions. Australian Journal of Grape & Wine Research, 2018, 24(3): 390-395. |
41 | Trond L, Aparna S. Reference gene selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua subjected to temperature and salt stress. Molecular Biotechnology, 2014, 56(3): 210-222. |
42 | Zhao W J, Li Y, Gao P F, et al. Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9): 1279-1286. |
43 | Chen Y, Tan Z Q, Hu B Y, et al. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses. Physiologia Plantarum, 2015, 155(2): 138-148. |
44 | Silveira E D, Alves-Ferreira M, Guimarães L A, et al. Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biology, 2009, 9(1): 84-93. |
45 | Robledo D, Hernández-Urcera J, Cal R M, et al. Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset. BMC Genomics, 2014, 15(1): 643-648. |
46 | Bustin S A. Why the need for qPCR publication guidelines?-The case for MIQE. Methods, 2010, 50(4): 217-226. |
47 | Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods, 2010, 50(4): 227-230. |
[1] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[2] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[3] | Ya-nan LIU, Ren-jie YU, Yan-li GAO, Jun-mei KANG, Qing-chuan YANG, Zhi-hai WU, Zhen WANG. Expression pattern and biological functions of an annexin encoding gene MtANN2 in Medicago truncatula under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 124-134. |
[4] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
[5] | Hong-tao XIANG, Dian-feng ZHENG, Ning HE, Wan LI, Man-li WANG, Shi-ya WANG. Research progress on the physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA [J]. Acta Prataculturae Sinica, 2021, 30(1): 208-219. |
[6] | WANG Yu-ping, GAO Chun-xiao, WANG Sheng-xiang, HE Xiao-tong. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress [J]. Acta Prataculturae Sinica, 2020, 29(8): 116-125. |
[7] | ZHANG Xiang, YANG Yong, LIU Xue-yong, XIANG Zuo-xiang. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 117-124. |
[8] | XIANG Hong-tao, LI Wan, HE Ning, WANG Xue-yang, ZHENG Dian-feng, WANG Tong-tong, LIANG Xiao-yan, TANG Xiao-dong, LI Yi-dan. Effects of S3307 on physiology of chilling resistance in root and on yield of adzuki bean under low temperature stress during seedling stage [J]. Acta Prataculturae Sinica, 2019, 28(7): 92-102. |
[9] | WANG Pei, CHEN Jiu-hong, WANG Ping, MA Qing, TIAN Li-hua, CHEN You-jun, ZHOU Qing-ping. Status of research into the abiotic stress tolerance of Elymus species [J]. Acta Prataculturae Sinica, 2019, 28(5): 151-162. |
[10] | XIANG Hong-tao, QI De-qiang, LI Wan, ZHENG Dian-feng, WANG Yue-xi, WANG Tong-tong, WANG Li-zhi, ZENG Xian-nan, YANG Chun-jie, ZHOU Hang, ZHAO Hai-dong. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress [J]. Acta Prataculturae Sinica, 2019, 28(4): 81-94. |
[11] | SUN Ya-nan, LIN Ru, PAN Xiao-yang, CHEN Yue, TAO Lei, GUO Chang-hong. Cloning and function analysis in tobacco of MsZAT10 from alfalfa [J]. Acta Prataculturae Sinica, 2019, 28(12): 94-102. |
[12] | SHU Bi-chao, YANG Yong, LIU Xue-yong, JIANG Yuan-li, XIANG Zuo-xiang, HU Long-xing. Effect of low temperature stress on physiology and gene expression in Bermuda grass [J]. Acta Prataculturae Sinica, 2018, 27(11): 106-119. |
[13] | LIU Jing, CHEN Zhen-jiang, LI Xiu-zhang, ZHOU Jing-le, LIU Li, LI Chun-jie. Interaction effects of exogenous salicylic acid, abscisic acid and Epichloё on Achnatherum inebrians symbiosis under low temperature stress [J]. Acta Prataculturae Sinica, 2018, 27(1): 142-151. |
[14] | YANG Yong, LOU Yan-Hong, YANG Zhi-Jian, XIANG Zuo-Xiang, XU Qing-Guo, HU Long-Xing. Effect of low temperature on phytohormones and carbohydrates metabolism in Bermuda grass [J]. Acta Prataculturae Sinica, 2016, 25(2): 205-215. |
[15] | LIANG Xiao-Hong, AI Fei-Fan, ZHONG Tian-Xiu, HAN Lie-Bao. Cross adaptation under drought and low temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2016, 25(1): 163-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||