Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 106-114.DOI: 10.11686/cyxb2023223
Xiao-lu ZOU(), Wen-jing ZHANG, Hong LYU, Nan QIN, Xiao-jun ZHAO, Hui YIN, Lu REN()
Received:
2023-07-03
Revised:
2023-08-11
Online:
2024-05-20
Published:
2024-02-03
Contact:
Lu REN
Xiao-lu ZOU, Wen-jing ZHANG, Hong LYU, Nan QIN, Xiao-jun ZHAO, Hui YIN, Lu REN. Biological characteristics and plant growth-promoting and biocontrol properties of endophytic bacterium ZJ1 from Buddleja lindleyana[J]. Acta Prataculturae Sinica, 2024, 33(5): 106-114.
发酵液浓度 Concentration of fermentation | 病斑面积 Lesion area (mm2) | 抑制率 Inhibition rate (%) |
---|---|---|
发酵液原液 Fermentation liquid | 21.79±0.73e | 98.29±0.59a |
5×稀释液5× diluent | 96.30±0.86d | 92.40±0.44b |
20×稀释液20× diluent | 174.49±1.25c | 86.68±0.48c |
50×稀释液50× diluent | 812.91±2.35b | 35.83±1.18d |
对照Control | 1275.94±1.76a | - |
Table 1 The control effect of fermentation of strain ZJ1 against A. solani on isolated fruits
发酵液浓度 Concentration of fermentation | 病斑面积 Lesion area (mm2) | 抑制率 Inhibition rate (%) |
---|---|---|
发酵液原液 Fermentation liquid | 21.79±0.73e | 98.29±0.59a |
5×稀释液5× diluent | 96.30±0.86d | 92.40±0.44b |
20×稀释液20× diluent | 174.49±1.25c | 86.68±0.48c |
50×稀释液50× diluent | 812.91±2.35b | 35.83±1.18d |
对照Control | 1275.94±1.76a | - |
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.32±0.93b | 73.12±3.01d | 4.38±0.37c | 84.10±1.35d |
5×稀释液5× diluent | 6.21±1.01c | 79.94±3.25bc | 3.66±0.55cd | 86.71±2.40c |
10×稀释液10× diluent | 6.78±0.77c | 78.10±2.47c | 1.23±0.42e | 95.54±1.47a |
100×稀释液100× diluent | 5.25±1.91d | 83.04±6.18b | 3.71±0.57cd | 86.52±2.08c |
200×稀释液200× diluent | 3.86±0.61e | 87.52±1.96a | 5.47±0.52b | 80.13±1.88e |
50%腐霉利600×稀释液 50% procymidone 600× diluent | 2.92±0.66e | 90.56±2.12a | 3.04±0.69d | 88.96±2.65b |
清水对照Water control | 30.96±0.99a | - | 27.54±2.19a | - |
Table 2 The control effect of fermentation liquid and its diluent on A. solani
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.32±0.93b | 73.12±3.01d | 4.38±0.37c | 84.10±1.35d |
5×稀释液5× diluent | 6.21±1.01c | 79.94±3.25bc | 3.66±0.55cd | 86.71±2.40c |
10×稀释液10× diluent | 6.78±0.77c | 78.10±2.47c | 1.23±0.42e | 95.54±1.47a |
100×稀释液100× diluent | 5.25±1.91d | 83.04±6.18b | 3.71±0.57cd | 86.52±2.08c |
200×稀释液200× diluent | 3.86±0.61e | 87.52±1.96a | 5.47±0.52b | 80.13±1.88e |
50%腐霉利600×稀释液 50% procymidone 600× diluent | 2.92±0.66e | 90.56±2.12a | 3.04±0.69d | 88.96±2.65b |
清水对照Water control | 30.96±0.99a | - | 27.54±2.19a | - |
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.03±0.43b | 80.27±1.04d | 6.30±0.28b | 71.13±1.28e |
5×稀释液5× diluent | 5.03±0.22d | 87.65±0.55b | 3.12±0.15d | 85.72±0.69b |
10×稀释液10× diluent | 6.60±0.40c | 83.80±0.98c | 3.40±0.12d | 84.44±0.56c |
100×稀释液100× diluent | 4.98±0.21d | 87.77±0.51b | 5.27±0.09c | 75.83±0.42d |
200×稀释液200× diluent | 3.26±0.19e | 91.99±0.47a | 3.18±0.27d | 85.43±1.25bc |
50% 腐霉利600×稀释液 50% procymidone 600× diluent | 3.25±0.14e | 92.02±0.33a | 1.43±0.10e | 93.43±0.44a |
清水对照Water control | 40.73±0.74a | - | 21.81±0.48a | - |
Table 3 The control effect of fermentation liquid and its diluent on B. cinerea
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.03±0.43b | 80.27±1.04d | 6.30±0.28b | 71.13±1.28e |
5×稀释液5× diluent | 5.03±0.22d | 87.65±0.55b | 3.12±0.15d | 85.72±0.69b |
10×稀释液10× diluent | 6.60±0.40c | 83.80±0.98c | 3.40±0.12d | 84.44±0.56c |
100×稀释液100× diluent | 4.98±0.21d | 87.77±0.51b | 5.27±0.09c | 75.83±0.42d |
200×稀释液200× diluent | 3.26±0.19e | 91.99±0.47a | 3.18±0.27d | 85.43±1.25bc |
50% 腐霉利600×稀释液 50% procymidone 600× diluent | 3.25±0.14e | 92.02±0.33a | 1.43±0.10e | 93.43±0.44a |
清水对照Water control | 40.73±0.74a | - | 21.81±0.48a | - |
1 | Jump A S, Mátyás C, Peñuelas J. The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 2009, 24(12): 694-701. |
2 | Karunamoorthi K, Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. Journal of Ethnobiology and Ethnomedicine, 2014, 10(22): 1-11. |
3 | Bamuamba K, Gammon D W, Meyers P, et al. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape province. Journal of Ethnopharmacology, 2008, 117(2): 385-390. |
4 | Köhl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 2019, 10: 845. |
5 | Sturz A V, Christie B R, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 2000, 19(1): 1-30. |
6 | Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2): 274-276. |
7 | Tan R X, Zou W X. Endophytes: a rich source of functional metabolites. Natural Product Reports, 2001, 18(4): 448-459. |
8 | Ownley B H, Gwinn K D, Vega F E. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 2010, 55(1): 113-128. |
9 | Shahzad R, Waqas M, Khan A L, et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biologica Hungarica, 2017, 68(2): 175-186. |
10 | Gauvry E, Mathot A G, Couvert O, et al. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. International Journal of Food Microbiology, 2021, 337: 108915. |
11 | Mukhopadhyay R, Kumar D. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 2020, 30: 133. |
12 | Zhu M L, Wang Y H, Dai Y, et al. Effects of different culture conditions on the biofilm formation of Bacillus pumilus HR10. Current Microbiology, 2020, 77(8): 1405-1411. |
13 | Zhang N, Wang D D, Liu Y P, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 2014, 374: 689-700. |
14 | Mhatre E, Monterrosa R G, Kovács Á T. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. Journal of Basic Microbiology, 2014, 54(7): 616-632. |
15 | Pal A, Bhattacharjee S, Saha J, et al. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Critical Reviews in Microbiology, 2021, 48(3): 327-355. |
16 | Robles-Kelly C, Rubio J, Thomas M, et al. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: evaluation of possible mechanism of action. Pesticide Biochemistry and Physiology, 2017, 141: 50-56. |
17 | You J Q, Zhang J, Wu M D, et al. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 2016, 101: 31-38. |
18 | Liu S M, Che Z P, Chen G Q. Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 2016, 84: 56-61. |
19 | Tomazoni E Z, Pauletti G F, da silva Ribeiro R T, et al. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Scientia Horticulturae, 2017, 223: 72-77. |
20 | Zhou M. The realistic challenge and countermeasure analysis of the development of biological pesticide in China. Chinese Journal of Biological Control, 2021, 37(1): 184-192. |
周蒙. 中国生物农药发展的现实挑战与对策分析. 中国生物防治学报, 2021, 37(1): 184-192. | |
21 | Sha Y X, Huang Z Y, Ma R. Control efficacy of Pseudomonas alcaliphila strain Ej2 against rice blast and its effect on endogenous hormones in rice. Scientia Agricultura Sinica, 2022, 55(2): 320-328. |
沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌 Ej2 对稻瘟病的防治效果及对水稻内源激素的影响. 中国农业科学, 2022, 55(2): 320-328. | |
22 | Zhu L Y, Cui G B, Sun W D, et al. Isolation, identification, and biocontrol activity of an endophytic strain Bacillus amyloliquefaciens CGB15 from sugarcane. Acta Microbiologica Sinica, 2022, 62(5): 1698-1710. |
朱録媛, 崔国兵, 孙文达, 等. 甘蔗内生解淀粉芽孢杆菌CGB15的分离、鉴定及生防活性. 微生物学报, 2022, 62(5): 1698-1710. | |
23 | Ren L, Zhou J B, Yin H, et al. Antifungal activity and control efficiency of endophytic Bacillus velezensis ZJ1 strain and its volatile compounds against Alternaria solani and Botrytis cinerea. Journal of Plant Pathology, 2022, 104: 575-589. |
24 | Ren L, Liu X F, Zhou J B, et al. Antagonism of endophytic bacteria ZJ1 from Buddleja lindleyana Fortune and identification of antifungal lipopetide metabolites. Acta Agrestia Sinica, 2021, 29(3): 434-442. |
任璐, 刘晓峰, 周建波, 等. 醉鱼草内生细菌ZJ1的抑菌作用及其脂肽类抑菌代谢产物鉴定. 草地学报, 2021, 29(3): 434-442. | |
25 | He C P, Huang Z Q, Wu W H, et al. Lethal temperature of Fusarium oxysporum f.sp. niveum and its nutrition resource of optimum carbon and nitrogen. Chinese Journal of Tropical Crops, 2008, 29(5): 648-652. |
贺春萍, 黄志强, 吴伟怀, 等. 一株西瓜尖孢镰刀菌的致死温度和最适碳氮营养源. 热带作物学报, 2008, 29(5): 648-652. | |
26 | Lajhar S A, Brownlie J, Barlow R. Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiology, 2018, 18(1): 1-15. |
27 | Zang R, Huang L L, Kang Z S, et al. Biological characteristics and pathogenicity of different isolates of Cytospora spp. from apple trees in Shaanxi province. Acta Phytopathologica Sinica, 2007, 37(4): 343-351. |
臧睿, 黄丽丽, 康振生, 等. 陕西苹果树腐烂病菌(Cytospora spp.)不同分离株的生物学特性与致病性研究. 植物病理学报, 2007, 37(4): 343-351. | |
28 | Jing Z Q, Guo Z J, Xu S J, et al. Screening, identification as Bacillus amyloliquefaciens strain HZ-6-3 and evaluation of inhibitory activity against tomato gray mold, of a bacterial isolate. Acta Prataculturae Sinica, 2020, 29(2): 31-41. |
荆卓琼, 郭致杰, 徐生军, 等. 解淀粉芽孢杆菌HZ-6-3的筛选鉴定及其防治番茄灰霉病效果的评价. 草业学报, 2020, 29(2): 31-41. | |
29 | Wang F K, Zheng G B. Method for identification of resistance to early blight of tomato. Acta Phytopathologica Sinica, 1992, 22(2): 168. |
王发科, 郑贵彬. 番茄早疫病抗病性鉴定方法. 植物病理学报, 1992, 22(2): 168. | |
30 | Xing Y X, Wei C Y, Mo Y, et al. Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech, 2016, 18: 373-379. |
31 | Qi H Y, Wang D, Han D, et al. Unlocking antagonistic potential of Bacillus amyloliquefaciens KRS005 to control gray mold. Frontiers in Microbiology, 2023, 14: 1189354. |
32 | Feng B, Chen D, Jin R, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiology, 2022, 22(1): 1-9. |
33 | Sun Y F, Liu Z, Li H Y, et al. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato. Chinese Journal of Applied Ecology, 2021, 32(1): 299-308. |
孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制. 应用生态学报, 2021, 32(1): 299-308. | |
34 | Xie Z Y, Guo E H, Sun Y B, et al. The growth-promotion effect of Bacillus subtilis strain B1409 on tomato and pepper and its control activity against Alternaria solani and Phytophthora capsici. Journal of Plant Protection, 2018, 45(3): 520-527. |
谢梓语, 郭恩辉, 孙宇波, 等. 枯草芽孢杆菌B1409对番茄和辣椒的防病促生作用. 植物保护学报, 2018, 45(3): 520-527. |
[1] | Xin-yu CHENG, Ji-lian WANG, Mairiyangu·Yasheng, Ming-yuan LI. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum [J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121. |
[2] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[3] | Chen-qin LI, Jun-qiao LI, Xin-ci WANG, Yong-kun NIU, Jun-ru QU. Isolation, identification, and biological characteristics of Fusarium perseae isolated from Potentilla anserina roots [J]. Acta Prataculturae Sinica, 2022, 31(4): 113-123. |
[4] | Jing-jing JIANG, Hui DU, Ai-chang CHEN, Xue-ping LI, Min-quan LI, Yong-hong QI. Identification and biological characterization of the pathogens responsible for sclerotinia rot in Codonopsis pilosula [J]. Acta Prataculturae Sinica, 2022, 31(12): 181-190. |
[5] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[6] | WANG Chun-ming, YUAN Wei-wei, ZHANG Xiao-jie, ZHOU Tian-wang, GUO Cheng, JIN She-lin. Isolation, identification and biological characteristics of Alternaria brassicicola leaf spot on Orychophragums violaceus [J]. Acta Prataculturae Sinica, 2020, 29(5): 88-97. |
[7] | JING Zhuo-qiong, GUO Zhi-jie, XU Sheng-jun, HE Su-qin. Screening, identification as Bacillus amyloliquefaciens strain HZ-6-3 and evaluation of inhibitory activity against tomato gray mold, of a bacterial isolate [J]. Acta Prataculturae Sinica, 2020, 29(2): 31-41. |
[8] | SUN Hai-rong, CHE Zhao-bi, CHEN Yi-shi, LU Wei-hua, WANG Shu-lin, LI Na-na, XIN Huai-lu. Ecological adaptability of biological traits and population distribution patterns for the ephemeral plant Leontice incerta in desert habitats [J]. Acta Prataculturae Sinica, 2019, 28(7): 198-207. |
[9] | YANG Cheng-de, CUI Yue-zhen, FENG Zhong-hong, XUE Li, JIN Meng-jun. Effects of endophytic Bacillus subtilis 265ZY4 on physiological and biochemical characteristics of Stipa purpurea under abiotic stress [J]. Acta Prataculturae Sinica, 2019, 28(6): 101-108. |
[10] | LI Jian-hong, LI Xue-ping, LI Chang-ning, HAN Bing, XU Wan-li, YAO Tuo. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1, and determination of its taxonomic status [J]. Acta Prataculturae Sinica, 2019, 28(5): 55-67. |
[11] | DING Ai-qiang, XÜ Xian-ying, ZHANG Wen, LIU Jiang, FU Li, FU Gui-quan. Soil physicochemical and biological characteristics of Tamarix ramosissima Nebkhas in different degradation degree [J]. Acta Prataculturae Sinica, 2019, 28(2): 1-11. |
[12] | JIANG Xu-wen, LI He-qin, TAN Yong. Identification, tolerance to abiotic stress and host plant effects of endophytic bacteria HX-2 from Agastache rugosa [J]. Acta Prataculturae Sinica, 2018, 27(1): 161-168. |
[13] | YANG Cheng-De, BIAN Jing, CHEN Tai-Xiang, CHEN Xiu-Rong, WANG Han-Qi, YANG Xiao-Li, WANG Yang. Biological characteristics of the Angelica sinensis anthracnose causal agent, Colletotrichum dematium [J]. Acta Prataculturae Sinica, 2017, 26(6): 139-144. |
[14] | HE Chun-Gui, HE Zhen-Fu, WANG Fei. Efficient double cropping pattern of photoperiod-sensitive sorghum-sudangrass hybrids in summer after winter wheat [J]. Acta Prataculturae Sinica, 2017, 26(5): 70-80. |
[15] | BAI Yu-Jing, YAO Yu-Ling, ZHANG Zhen-Fen, YANG Cheng-De, XUE Li. Identification of alfalfa root rot caused by Fusarium chlamydosporum and screening of antagonistic bacterial strains [J]. Acta Prataculturae Sinica, 2017, 26(2): 78-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||