Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 143-154.DOI: 10.11686/cyxb2023240
Hai-ming KONG1(), Jia-xing SONG1, Jing YANG1, Qian LI2, Pei-zhi YANG1, Yu-man CAO1()
Received:
2023-07-13
Revised:
2023-09-04
Online:
2024-05-20
Published:
2024-02-03
Contact:
Yu-man CAO
Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa[J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154.
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAMTA1 | GAGGAGGAAGCACGCCAG | GCGGCTGCCATTGCTTTT |
MsCAMTA3 | GCGGACAGTTGGCTTCCT | GCCCTTTGTGCCCATTGC |
MsCAMTA11 | TCTTCATTGGGCGGCGTT | AGCTAGGTCGGCTGGTGT |
MsCAMTA12 | TGGTGCATCTGCTGGAGC | CCAGTCCCTTATGCCCGC |
MsActin | GACAATGGAACTGGAATGG | CAATACCGTGCTCAATGG |
Table 1 Primers used for RT-qPCR
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAMTA1 | GAGGAGGAAGCACGCCAG | GCGGCTGCCATTGCTTTT |
MsCAMTA3 | GCGGACAGTTGGCTTCCT | GCCCTTTGTGCCCATTGC |
MsCAMTA11 | TCTTCATTGGGCGGCGTT | AGCTAGGTCGGCTGGTGT |
MsCAMTA12 | TGGTGCATCTGCTGGAGC | CCAGTCCCTTATGCCCGC |
MsActin | GACAATGGAACTGGAATGG | CAATACCGTGCTCAATGG |
基因名称 Gene name | 基因号 Gene ID | 染色体 Chromosome | 不稳定 指数 Instability index | 疏水性指数 Grand average of hydrophobicity (GRAVY) | 脂肪指数 Aliphatic index | 蛋白质长度 Protein length (aa) | 分子量 Molecular weight (kDa) | 等电点 Isoelectric point (pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
MsCAMTA1 | MS.gene00191.t1 | Chr2.1 | 42.00 | -0.418 | 79.07 | 915 | 103.86 | 6.49 | 细胞核Nucleus |
MsCAMTA2 | MS.gene56018.t1 | Chr2.3 | 42.52 | -0.418 | 78.73 | 914 | 103.81 | 6.48 | 细胞核Nucleus |
MsCAMTA3 | MS.gene002202.t1 | Chr2.3 | 47.33 | -0.522 | 76.66 | 913 | 101.75 | 5.24 | 细胞核Nucleus |
MsCAMTA4 | MS.gene09226.t1 | Chr4.1 | 47.88 | -0.596 | 69.50 | 960 | 107.40 | 5.44 | 细胞核Nucleus |
MsCAMTA5 | MS.gene57296.t1 | Chr4.1 | 43.64 | -0.443 | 79.89 | 1745 | 196.21 | 6.12 | 细胞核Nucleus |
MsCAMTA6 | MS.gene028443.t1 | Chr4.1 | 45.76 | -0.575 | 70.13 | 1029 | 116.11 | 5.70 | 细胞核Nucleus |
MsCAMTA7 | MS.gene90181.t1 | Chr4.2 | 45.67 | -0.570 | 70.51 | 1029 | 116.11 | 5.67 | 细胞核Nucleus |
MsCAMTA8 | MS.gene030815.t1 | Chr4.2 | 45.61 | -0.619 | 74.79 | 1086 | 123.35 | 5.77 | 细胞核Nucleus |
MsCAMTA9 | MS.gene70367.t1 | Chr4.3 | 45.59 | -0.567 | 70.41 | 1029 | 116.08 | 5.73 | 细胞核Nucleus |
MsCAMTA10 | MS.gene023441.t1 | Chr4.3 | 47.56 | -0.603 | 69.40 | 960 | 107.42 | 5.44 | 细胞核Nucleus |
MsCAMTA11 | MS.gene061784.t1 | Chr4.3 | 45.61 | -0.619 | 74.79 | 1086 | 123.35 | 5.77 | 细胞核Nucleus |
MsCAMTA12 | MS.gene09019.t1 | Chr4.4 | 47.56 | -0.603 | 69.40 | 960 | 107.42 | 5.44 | 细胞核Nucleus |
MsCAMTA13 | MS.gene28071.t1 | Chr4.4 | 44.14 | -0.420 | 81.90 | 1437 | 161.54 | 6.30 | 叶绿体Chloroplast |
MsCAMTA14 | MS.gene35018.t1 | Chr4.4 | 46.06 | -0.572 | 70.13 | 1029 | 116.16 | 5.70 | 细胞核Nucleus |
MsCAMTA15 | MS.gene61520.t1 | Chr8.3 | 39.09 | -0.467 | 80.03 | 864 | 98.08 | 7.14 | 细胞核Nucleus |
MsCAMTA16 | MS.gene61521.t1 | Chr8.3 | 40.02 | -0.474 | 80.42 | 924 | 105.32 | 7.37 | 细胞核Nucleus |
MsCAMTA17 | MS.gene042294.t1 | Chr8.3 | 39.70 | -0.470 | 80.51 | 923 | 105.16 | 7.15 | 细胞核Nucleus |
Table 2 Basic information of CAMTA family members in M. sativa
基因名称 Gene name | 基因号 Gene ID | 染色体 Chromosome | 不稳定 指数 Instability index | 疏水性指数 Grand average of hydrophobicity (GRAVY) | 脂肪指数 Aliphatic index | 蛋白质长度 Protein length (aa) | 分子量 Molecular weight (kDa) | 等电点 Isoelectric point (pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
MsCAMTA1 | MS.gene00191.t1 | Chr2.1 | 42.00 | -0.418 | 79.07 | 915 | 103.86 | 6.49 | 细胞核Nucleus |
MsCAMTA2 | MS.gene56018.t1 | Chr2.3 | 42.52 | -0.418 | 78.73 | 914 | 103.81 | 6.48 | 细胞核Nucleus |
MsCAMTA3 | MS.gene002202.t1 | Chr2.3 | 47.33 | -0.522 | 76.66 | 913 | 101.75 | 5.24 | 细胞核Nucleus |
MsCAMTA4 | MS.gene09226.t1 | Chr4.1 | 47.88 | -0.596 | 69.50 | 960 | 107.40 | 5.44 | 细胞核Nucleus |
MsCAMTA5 | MS.gene57296.t1 | Chr4.1 | 43.64 | -0.443 | 79.89 | 1745 | 196.21 | 6.12 | 细胞核Nucleus |
MsCAMTA6 | MS.gene028443.t1 | Chr4.1 | 45.76 | -0.575 | 70.13 | 1029 | 116.11 | 5.70 | 细胞核Nucleus |
MsCAMTA7 | MS.gene90181.t1 | Chr4.2 | 45.67 | -0.570 | 70.51 | 1029 | 116.11 | 5.67 | 细胞核Nucleus |
MsCAMTA8 | MS.gene030815.t1 | Chr4.2 | 45.61 | -0.619 | 74.79 | 1086 | 123.35 | 5.77 | 细胞核Nucleus |
MsCAMTA9 | MS.gene70367.t1 | Chr4.3 | 45.59 | -0.567 | 70.41 | 1029 | 116.08 | 5.73 | 细胞核Nucleus |
MsCAMTA10 | MS.gene023441.t1 | Chr4.3 | 47.56 | -0.603 | 69.40 | 960 | 107.42 | 5.44 | 细胞核Nucleus |
MsCAMTA11 | MS.gene061784.t1 | Chr4.3 | 45.61 | -0.619 | 74.79 | 1086 | 123.35 | 5.77 | 细胞核Nucleus |
MsCAMTA12 | MS.gene09019.t1 | Chr4.4 | 47.56 | -0.603 | 69.40 | 960 | 107.42 | 5.44 | 细胞核Nucleus |
MsCAMTA13 | MS.gene28071.t1 | Chr4.4 | 44.14 | -0.420 | 81.90 | 1437 | 161.54 | 6.30 | 叶绿体Chloroplast |
MsCAMTA14 | MS.gene35018.t1 | Chr4.4 | 46.06 | -0.572 | 70.13 | 1029 | 116.16 | 5.70 | 细胞核Nucleus |
MsCAMTA15 | MS.gene61520.t1 | Chr8.3 | 39.09 | -0.467 | 80.03 | 864 | 98.08 | 7.14 | 细胞核Nucleus |
MsCAMTA16 | MS.gene61521.t1 | Chr8.3 | 40.02 | -0.474 | 80.42 | 924 | 105.32 | 7.37 | 细胞核Nucleus |
MsCAMTA17 | MS.gene042294.t1 | Chr8.3 | 39.70 | -0.470 | 80.51 | 923 | 105.16 | 7.15 | 细胞核Nucleus |
1 | Galon Y, Snir O, Fromm H. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Plant Signaling Behavior, 2010, 5(10): 1311-1314. |
2 | Reddy A S N, Ali G S, Celesnik H, et al. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. The Plant Cell, 2011, 23(6): 2010-2032. |
3 | Xiao P X, Feng J W, Zhu X T, et al. Evolution analyses of CAMTA transcription factor in plants and its enhancing effect on cold-tolerance. Frontiers in Plant Science, 2021, 12: 758187. |
4 | Kim Y, Gilmour S J, Chao L, et al. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Molecular Plant, 2020, 13(1): 157-168. |
5 | Pei J, Flieder D B, Patchefsky A, et al. Detecting MYB and MYBL1 fusion genes in tracheobronchial adenoid cystic carcinoma by targeted RNA-sequencing. Modern Pathology, 2019, 32(10): 1416-1420. |
6 | Yang Y, Yoo C G, Rottmann W, et al. PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynthesis and composition in Populus. BMC Plant Biology, 2019, 19(1): 486. |
7 | Zhu D, Hou L X, Xiao P L, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Science, 2019, 280: 132-142. |
8 | Lorenzo O. bZIP edgetic mutations: at the frontier of plant metabolism, development and stress trade-off. Journal of Experimental Botany, 2019, 70(20): 5517-5520. |
9 | Rahman H, Yang J, Xu Y P, et al. Phylogeny of plant CAMTAs and role of AtCAMTAs in nonhost resistance to Xanthomonas oryzae pv. oryzae. Frontiers in Plant Science, 2016, 7(303): 177-178. |
10 | Aravind L, Koonin E V. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 1999, 287(5): 1023-1040. |
11 | Müller C W, Rey F A, Sodeoka M, et al. Structure of the NF-κB p50 homodimer bound to DNA. Nature, 1995, 373(6512): 311-317. |
12 | Rubtsov A M, Lopina O D. Ankyrins. FEBS Letters, 2000, 482(1/2): 1-5. |
13 | Yang T, Poovaiah B W. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. The Journal of Biological Chemistry, 2002, 277(47): 45049-45058. |
14 | Shkolnik D, Finkler A, Pasmanik-Chor M, et al. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na+ homeostasis during germination. Plant Physiology, 2019, 180(2): 1101-1118. |
15 | Yuan P, Du L, Poovaiah B W. Ca2+/calmodulin-dependent AtSR1/CAMTA3 plays critical roles in balancing plant growth and immunity. International Journal of Molecular Sciences, 2018, 19(6): 1764-1765. |
16 | Satoshi K, Kazuo S, Kazuko Y. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, 27(9): 922-935. |
17 | Kim Y S, Park S C, Gilmour S J, et al. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2013, 75(3): 364-376. |
18 | Yue R Q, Lu C X, Sun T, et al. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Frontiers in Plant Science, 2015, 6(576): 576. |
19 | Yang T, Peng H, Whitaker B D, et al. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiologia Plantarum, 2013, 148(3): 445-455. |
20 | Neha P, Alok R, Poonam P, et al. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics, 2013, 14(1): 216. |
21 | Yang F, Dong F S, Liu Y W, et al. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genomics, 2020, 21(1): 105-106. |
22 | Leng X P, Han J, Wang X M, et al. Characterization of a calmodulin-binding transcription factor from strawberry (Fragaria×ananassa). The Plant Genome, 2015, 8(2): 1-12. |
23 | Liu Z P, Chen T L, Ma L C, et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One, 2013, 8(12): e83549. |
24 | Gain H, Nandi D, Kumari D S, et al. Genome-wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Functional Integrative Genomics, 2022, 22(2): 193-214. |
25 | Shangguan L F, Wang X M, Leng X P, et al. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Molecular Biology Reports, 2014, 41(5): 2937-2949. |
26 | Wang G P, Zeng H Q, Hu X Y, et al. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil, 2015, 386(1/2): 205-221. |
27 | Rahman H, Xu Y P, Zhang X R, et al. Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum. Frontiers in Plant Science, 2016, 7(177): 581. |
28 | Yang T, Peng H, Whitaker B D, et al. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biology, 2012, 12(1): 19-20. |
29 | Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
30 | Yuan J, Amend A, Borkowski J, et al. MULTICLUSTAL: a systematic method for surveying Clustal W alignment parameters. Bioinformatics, 1999, 15(10): 862-863. |
31 | Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics, 1994, 10(2): 189-191. |
32 | Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
33 | Bailey T L, Boden M, Buske F A, et al. MEME suite: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(2): W202-W208. |
34 | Luo D, Zhou Q, Wu Y, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology, 2019, 19(1): 1-20. |
35 | Luo D, Wu Y, Liu J, et al. Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment. International Journal of Molecular Sciences, 2018, 20(1): 1-22. |
36 | Min X, Liu Z, Wang Y, et al. Comparative transcriptomic analysis provides insights into the coordinated mechanisms of leaves and roots response to cold stress in common vetch. Industrial Crops Products, 2020, 158(1): 112949. |
37 | Luo Y, Liu Y B, Yu X D, et al. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. Journal of Plant Physiology, 2009, 166(4): 385-394. |
38 | Ren M H, Zhang Y P, Xu T, et al. Identification and expression analyses of R2R3-MYB subfamily in alfalfa under drought stress. Acta Agrestia Sinica, 2023, 31(4): 972-983. |
任明辉, 张雨蓬, 许涛, 等. 紫花苜蓿R2R3-MYB亚家族鉴定与干旱胁迫下的表达分析. 草地学报, 2023, 31(4): 972-983. | |
39 | Yang Y J, Sun T, Xu L R, et al. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Frontiers in Plant Science, 2015, 6(459): 459. |
40 | Jiang X M, Yuan Z, Zhu F J, et al. Genome-wide identification and evolutionary analysis of CAMTA transcription factor family in Cenchrus fungigraminus. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(1): 10-16. |
姜晓梦, 袁振, 朱方捷, 等. 巨菌草(Cenchrus fungigraminus)全基因组CAMTA家族转录因子的鉴定及进化分析. 福建农林大学学报(自然科学版), 2023, 52(1): 10-16. | |
41 | Jiang H H, Li L, Li X F. Bioinformatics analysis of pepper CAMTA gene family. China Vegetables, 2022, 1(9): 47-56. |
蒋宏华, 李丽, 李雪峰. 辣椒CAMTA基因家族生物信息学分析. 中国蔬菜, 2022, 1(9): 47-56. | |
42 | Lin X Z, Xiao X H, Yang J H, et al. Genome-wide identification and expression analysis of the CAMTA family in rubber tree (Hevea brasiliensis). Chinese Journal of Tropical Crops, 2021, 42(10): 2859-2868. |
林显祖, 肖小虎, 阳江华, 等. 巴西橡胶树CAMTA转录因子全基因组鉴定与表达分析. 热带作物学报, 2021, 42(10): 2859-2868. |
[1] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[2] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[3] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[4] | Chao-nan MENG, Yu-jie ZHAO, Jia-xin CHEN, Yi-lu ZHANG, Yan-jia WANG, Li-rong FENG, Yu-gang SUN, Chang-hong GUO. Screening and identification of two strains of nitrogen-fixing bacteria from the silage maize rhizosphere and their roles in plant growth promotion [J]. Acta Prataculturae Sinica, 2024, 33(3): 174-185. |
[5] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[6] | Ying TANG, Xiao-jing LIU, Ya-jiao ZHAO, Lin DONG. Characteristics and driving factors of lactic acid bacteria communities in silage made from alfalfa in different regions of Gansu Province [J]. Acta Prataculturae Sinica, 2024, 33(2): 112-124. |
[7] | Jia-hui CHEN, Wen-xian LIU. Construction and application of a graphic visualization tool for important forage omics data [J]. Acta Prataculturae Sinica, 2024, 33(2): 57-67. |
[8] | Kong-qin WEI, Jun-wei ZHAO, Qian-bing ZHANG. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
[9] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[10] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[11] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
[12] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[13] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[14] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
[15] | Jin GUAN, Yi-di GUO, Ling-yun LIU, Shu-xia YIN, Ke TENG. An efficient protocol for Zoysia japonica mesophyll protoplast isolation and transformation, and its application in subcellular localization and protein interaction analysis [J]. Acta Prataculturae Sinica, 2023, 32(7): 61-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||