Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (12): 59-72.DOI: 10.11686/cyxb2024039
Previous Articles Next Articles
Qi-kun YU1(), Wen LI1, Li-si TANG1, Yu HAN1, Pei-ying LI1,2,3(), Zong-jiu SUN1,2,3
Received:
2024-01-27
Revised:
2024-03-28
Online:
2024-12-20
Published:
2024-10-09
Contact:
Pei-ying LI
Qi-kun YU, Wen LI, Li-si TANG, Yu HAN, Pei-ying LI, Zong-jiu SUN. Estimation of relative water content in bermudagrass leaves based on hyperspectroscopy[J]. Acta Prataculturae Sinica, 2024, 33(12): 59-72.
项目 Item | 干旱时间 Drought time | ||||
---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | |
C136 | 90.22±5.19Aab | 74.41±16.60Aa | 35.52±19.86Ba | 14.26±14.92BCa | 4.91±3.31Ca |
C121 | 97.00±5.19Aa | 70.01±10.50Ba | 18.20±0.63Cabc | 7.31±1.39Da | 3.69±0.57Da |
C100 | 93.39±5.74Aab | 61.18±21.04Bab | 15.56±9.13Cabc | 14.05±10.94Ca | 3.87±1.14Ca |
C99 | 84.50±0.47Aab | 53.91±10.38Bab | 20.30±16.70Cabc | 10.19±6.63Ca | 3.06±0.71Ca |
C92 | 90.15±4.07Aab | 60.10±6.02Bab | 13.39±5.15Cabc | 9.96±3.77CDa | 4.34±2.30Da |
C87 | 84.18±13.52Aab | 56.39±14.12Bab | 9.88±5.34Cbc | 7.64±0.37Ca | 4.15±1.17Ca |
C84 | 80.97±11.63Ab | 65.00±18.82Aa | 13.01±8.24Bbc | 7.24±0.79Ba | 3.95±0.97Ba |
C76 | 83.23±3.86Aab | 48.20±14.36Bab | 10.72±7.67Cbc | 9.87±2.38Ca | 4.09±0.81Ca |
C75 | 81.09±9.36Ab | 57.29±13.27Aab | 26.96±26.18Babc | 7.07±3.07Ba | 4.29±2.07Ba |
C72 | 84.67±4.54Aab | 60.56±19.65Bab | 6.35±1.18Cc | 8.90±3.47Ca | 3.82±1.62Ca |
C63 | 84.74±6.82Aab | 63.32±10.07Bab | 15.54±8.09Cabc | 7.49±0.97Ca | 4.27±3.40Ca |
C40 | 90.85±9.85Aab | 48.02±13.85Bab | 13.48±6.11Cabc | 6.30±0.16Ca | 3.16±0.83Ca |
C28 | 92.89±6.16Aab | 59.30±18.39Bab | 20.62±19.99Cabc | 12.10±8.29Ca | 3.65±1.01Ca |
C22 | 91.87±3.03Aab | 68.87±10.92Ba | 31.19±15.50Cab | 9.44±4.46Da | 3.98±1.38Da |
X1 | 96.11±6.74Aa | 65.50±27.13Ba | 13.59±3.27Cabc | 6.86±1.99Ca | 4.31±1.09Ca |
X2 | 94.66±8.67Aab | 63.61±6.53Ba | 8.10±1.78Cc | 7.39±1.21Ca | 5.21±0.30Ca |
KS | 96.87±5.42Aa | 46.30±11.16Bab | 12.44±7.65Cbc | 6.88±0.32Ca | 4.89±1.29Ca |
PG | 88.93±1.23Aab | 33.79±12.71Bb | 6.44±2.01Cc | 6.78±1.11Ca | 3.44±0.33Ca |
最大值Maximun | 97.00 | 74.41 | 35.52 | 14.26 | 5.21 |
最小值Minimum | 80.97 | 33.79 | 6.35 | 6.30 | 3.06 |
平均值Mean | 89.24 | 58.65 | 16.18 | 8.87 | 4.06 |
标准差Standard deviation | 5.41 | 9.85 | 8.15 | 2.47 | 0.57 |
变异系数Variable coefficient | 6.06 | 16.80 | 50.36 | 27.80 | 14.10 |
Table 1 Soil water content of 18 bermudagrass materials at different drought times (%)
项目 Item | 干旱时间 Drought time | ||||
---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | |
C136 | 90.22±5.19Aab | 74.41±16.60Aa | 35.52±19.86Ba | 14.26±14.92BCa | 4.91±3.31Ca |
C121 | 97.00±5.19Aa | 70.01±10.50Ba | 18.20±0.63Cabc | 7.31±1.39Da | 3.69±0.57Da |
C100 | 93.39±5.74Aab | 61.18±21.04Bab | 15.56±9.13Cabc | 14.05±10.94Ca | 3.87±1.14Ca |
C99 | 84.50±0.47Aab | 53.91±10.38Bab | 20.30±16.70Cabc | 10.19±6.63Ca | 3.06±0.71Ca |
C92 | 90.15±4.07Aab | 60.10±6.02Bab | 13.39±5.15Cabc | 9.96±3.77CDa | 4.34±2.30Da |
C87 | 84.18±13.52Aab | 56.39±14.12Bab | 9.88±5.34Cbc | 7.64±0.37Ca | 4.15±1.17Ca |
C84 | 80.97±11.63Ab | 65.00±18.82Aa | 13.01±8.24Bbc | 7.24±0.79Ba | 3.95±0.97Ba |
C76 | 83.23±3.86Aab | 48.20±14.36Bab | 10.72±7.67Cbc | 9.87±2.38Ca | 4.09±0.81Ca |
C75 | 81.09±9.36Ab | 57.29±13.27Aab | 26.96±26.18Babc | 7.07±3.07Ba | 4.29±2.07Ba |
C72 | 84.67±4.54Aab | 60.56±19.65Bab | 6.35±1.18Cc | 8.90±3.47Ca | 3.82±1.62Ca |
C63 | 84.74±6.82Aab | 63.32±10.07Bab | 15.54±8.09Cabc | 7.49±0.97Ca | 4.27±3.40Ca |
C40 | 90.85±9.85Aab | 48.02±13.85Bab | 13.48±6.11Cabc | 6.30±0.16Ca | 3.16±0.83Ca |
C28 | 92.89±6.16Aab | 59.30±18.39Bab | 20.62±19.99Cabc | 12.10±8.29Ca | 3.65±1.01Ca |
C22 | 91.87±3.03Aab | 68.87±10.92Ba | 31.19±15.50Cab | 9.44±4.46Da | 3.98±1.38Da |
X1 | 96.11±6.74Aa | 65.50±27.13Ba | 13.59±3.27Cabc | 6.86±1.99Ca | 4.31±1.09Ca |
X2 | 94.66±8.67Aab | 63.61±6.53Ba | 8.10±1.78Cc | 7.39±1.21Ca | 5.21±0.30Ca |
KS | 96.87±5.42Aa | 46.30±11.16Bab | 12.44±7.65Cbc | 6.88±0.32Ca | 4.89±1.29Ca |
PG | 88.93±1.23Aab | 33.79±12.71Bb | 6.44±2.01Cc | 6.78±1.11Ca | 3.44±0.33Ca |
最大值Maximun | 97.00 | 74.41 | 35.52 | 14.26 | 5.21 |
最小值Minimum | 80.97 | 33.79 | 6.35 | 6.30 | 3.06 |
平均值Mean | 89.24 | 58.65 | 16.18 | 8.87 | 4.06 |
标准差Standard deviation | 5.41 | 9.85 | 8.15 | 2.47 | 0.57 |
变异系数Variable coefficient | 6.06 | 16.80 | 50.36 | 27.80 | 14.10 |
编号 Code | 干旱时间 Drought time | ||||
---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | |
C136 | 94.57±4.72abc | 84.11±14.42abc | 68.36±2.93bc | 49.43±7.59a | 26.00±3.84a |
C121 | 99.51±0.62ab | 86.01±1.19abc | 67.51±2.43bc | 18.48±5.68bcdef | 15.08±2.70bcd |
C100 | 95.13±4.60abc | 87.80±10.46abc | 73.90±1.56ab | 21.77±2.52bcde | 14.99±2.47bcd |
C99 | 95.31±5.90abc | 77.35±8.19abc | 58.79±7.00def | 24.37±11.38bcd | 15.11±4.26bcd |
C92 | 99.87±0.00a | 92.13±13.39ab | 68.59±3.49bc | 25.00±5.37bc | 14.21±1.06bcde |
C87 | 99.06±1.50abc | 89.73±8.79abc | 57.81±1.97efg | 16.82±7.34cdefg | 13.17±1.05cdefg |
C84 | 96.82±4.22abc | 95.74±7.14ab | 66.48±1.48bcd | 24.89±0.74bc | 12.43±1.48cdefgh |
C76 | 96.30±3.15abc | 84.29±0.82abc | 57.00±3.11efg | 13.19±0.90efg | 10.36±1.22efghi |
C75 | 94.30±9.66abc | 87.30±10.93abc | 64.89±6.77cde | 25.22±2.01bc | 16.38±3.25bc |
C72 | 95.47±4.21abc | 90.10±8.62abc | 57.89±6.07efg | 14.94±5.36efg | 9.55±2.11fghi |
C63 | 98.54±2.29abc | 99.87±0.00a | 71.88±8.49abc | 25.68±3.28bc | 14.81±3.62bcd |
C40 | 99.87±0.01a | 95.32±7.86ab | 49.89±4.59g | 8.92±0.51g | 8.23±0.23hi |
C28 | 98.60±1.31abc | 99.88±0.00a | 68.14±5.19bc | 15.01±0.26efg | 13.63±0.53bcdef |
C22 | 93.06±7.10abc | 88.78±9.66abc | 76.99±5.22a | 26.07±1.88b | 17.96±2.79b |
X1 | 89.91±7.64bc | 78.36±37.21abc | 58.92±2.10def | 13.65±2.23efg | 7.77±0.42i |
X2 | 89.49±6.09c | 75.41±3.81bc | 67.26±3.09bcd | 18.03±3.70bcdef | 9.07±1.25ghi |
KS | 91.77±7.06abc | 92.17±13.29ab | 51.14±6.51fg | 15.82±1.95defg | 8.47±2.44hi |
PG | 91.30±4.97abc | 67.87±1.10c | 13.14±1.80h | 11.40±1.93fg | 11.04±0.38defghi |
最大值Maximun | 99.87 | 99.88 | 76.99 | 49.43 | 26.00 |
最小值Minimum | 89.49 | 67.87 | 13.14 | 8.92 | 7.77 |
平均值Mean | 95.49 | 87.34 | 61.03 | 20.48 | 13.24 |
标准差Standard deviation | 3.39 | 8.52 | 14.11 | 9.07 | 4.41 |
变异系数Variable coefficient | 3.55 | 9.75 | 23.13 | 44.26 | 33.34 |
Table 2 Relative leaf water content of 18 bermudagrass at different drought times (%)
编号 Code | 干旱时间 Drought time | ||||
---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 12 d | |
C136 | 94.57±4.72abc | 84.11±14.42abc | 68.36±2.93bc | 49.43±7.59a | 26.00±3.84a |
C121 | 99.51±0.62ab | 86.01±1.19abc | 67.51±2.43bc | 18.48±5.68bcdef | 15.08±2.70bcd |
C100 | 95.13±4.60abc | 87.80±10.46abc | 73.90±1.56ab | 21.77±2.52bcde | 14.99±2.47bcd |
C99 | 95.31±5.90abc | 77.35±8.19abc | 58.79±7.00def | 24.37±11.38bcd | 15.11±4.26bcd |
C92 | 99.87±0.00a | 92.13±13.39ab | 68.59±3.49bc | 25.00±5.37bc | 14.21±1.06bcde |
C87 | 99.06±1.50abc | 89.73±8.79abc | 57.81±1.97efg | 16.82±7.34cdefg | 13.17±1.05cdefg |
C84 | 96.82±4.22abc | 95.74±7.14ab | 66.48±1.48bcd | 24.89±0.74bc | 12.43±1.48cdefgh |
C76 | 96.30±3.15abc | 84.29±0.82abc | 57.00±3.11efg | 13.19±0.90efg | 10.36±1.22efghi |
C75 | 94.30±9.66abc | 87.30±10.93abc | 64.89±6.77cde | 25.22±2.01bc | 16.38±3.25bc |
C72 | 95.47±4.21abc | 90.10±8.62abc | 57.89±6.07efg | 14.94±5.36efg | 9.55±2.11fghi |
C63 | 98.54±2.29abc | 99.87±0.00a | 71.88±8.49abc | 25.68±3.28bc | 14.81±3.62bcd |
C40 | 99.87±0.01a | 95.32±7.86ab | 49.89±4.59g | 8.92±0.51g | 8.23±0.23hi |
C28 | 98.60±1.31abc | 99.88±0.00a | 68.14±5.19bc | 15.01±0.26efg | 13.63±0.53bcdef |
C22 | 93.06±7.10abc | 88.78±9.66abc | 76.99±5.22a | 26.07±1.88b | 17.96±2.79b |
X1 | 89.91±7.64bc | 78.36±37.21abc | 58.92±2.10def | 13.65±2.23efg | 7.77±0.42i |
X2 | 89.49±6.09c | 75.41±3.81bc | 67.26±3.09bcd | 18.03±3.70bcdef | 9.07±1.25ghi |
KS | 91.77±7.06abc | 92.17±13.29ab | 51.14±6.51fg | 15.82±1.95defg | 8.47±2.44hi |
PG | 91.30±4.97abc | 67.87±1.10c | 13.14±1.80h | 11.40±1.93fg | 11.04±0.38defghi |
最大值Maximun | 99.87 | 99.88 | 76.99 | 49.43 | 26.00 |
最小值Minimum | 89.49 | 67.87 | 13.14 | 8.92 | 7.77 |
平均值Mean | 95.49 | 87.34 | 61.03 | 20.48 | 13.24 |
标准差Standard deviation | 3.39 | 8.52 | 14.11 | 9.07 | 4.41 |
变异系数Variable coefficient | 3.55 | 9.75 | 23.13 | 44.26 | 33.34 |
特征波段 Characteristic band (nm) | 方差膨胀因子 Variance inflation factor (VIF) |
---|---|
499 | 9.976 |
684 | 9.976 |
Table 3 Variance inflation factor test for Savitzkye Golay smoothing characteristic wavelength
特征波段 Characteristic band (nm) | 方差膨胀因子 Variance inflation factor (VIF) |
---|---|
499 | 9.976 |
684 | 9.976 |
特征波段 Characteristic band (nm) | 方差膨胀因子 Variance inflation factor (VIF) |
---|---|
476 | 6.977 |
522 | 5.238 |
556 | 11.942 |
681 | 3.309 |
739 | 6.953 |
778 | 8.625 |
812 | 6.488 |
Table 4 Variance inflation factor test for Savitzkye Golay smoothing+first derivative combined characteristic wavelength
特征波段 Characteristic band (nm) | 方差膨胀因子 Variance inflation factor (VIF) |
---|---|
476 | 6.977 |
522 | 5.238 |
556 | 11.942 |
681 | 3.309 |
739 | 6.953 |
778 | 8.625 |
812 | 6.488 |
预处理 Pretreatment | 筛选 Screen | 建模 Modeling | 训练集 Train (n=151) | 测试集 Test (n=65) | 预处理 Pretreatment | 筛选 Screen | 建模 Modeling | 训练集 Train (n=151) | 测试集 Test (n=65) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||||||
FD | Per | BP | 0.852 | 13.120 | 0.838 | 14.027 | SG | Per | BP | 0.826 | 14.419 | 0.822 | 14.225 |
SVM | 0.860 | 12.376 | 0.854 | 13.730 | SVM | 0.767 | 16.418 | 0.761 | 16.864 | ||||
RF | 0.927 | 9.344 | 0.908 | 10.119 | RF | 0.867 | 12.359 | 0.848 | 13.705 | ||||
SPA | BP | 0.867 | 12.484 | 0.849 | 13.454 | SPA | BP | 0.846 | 13.589 | 0.832 | 13.794 | ||
SVM | 0.891 | 11.070 | 0.882 | 12.320 | SVM | 0.869 | 12.287 | 0.865 | 12.892 | ||||
RF | 0.939 | 8.552 | 0.925 | 9.008 | RF | 0.900 | 10.639 | 0.888 | 11.936 |
Table 5 Comparison of inverse models for estimating relative water content of 18 bermudagrass leaves
预处理 Pretreatment | 筛选 Screen | 建模 Modeling | 训练集 Train (n=151) | 测试集 Test (n=65) | 预处理 Pretreatment | 筛选 Screen | 建模 Modeling | 训练集 Train (n=151) | 测试集 Test (n=65) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||||||
FD | Per | BP | 0.852 | 13.120 | 0.838 | 14.027 | SG | Per | BP | 0.826 | 14.419 | 0.822 | 14.225 |
SVM | 0.860 | 12.376 | 0.854 | 13.730 | SVM | 0.767 | 16.418 | 0.761 | 16.864 | ||||
RF | 0.927 | 9.344 | 0.908 | 10.119 | RF | 0.867 | 12.359 | 0.848 | 13.705 | ||||
SPA | BP | 0.867 | 12.484 | 0.849 | 13.454 | SPA | BP | 0.846 | 13.589 | 0.832 | 13.794 | ||
SVM | 0.891 | 11.070 | 0.882 | 12.320 | SVM | 0.869 | 12.287 | 0.865 | 12.892 | ||||
RF | 0.939 | 8.552 | 0.925 | 9.008 | RF | 0.900 | 10.639 | 0.888 | 11.936 |
1 | Chan Z L, Shi H T, Wang Y P. Response of bermuda grass to abiotic stress. Pratacultural Science, 2013, 30(8): 1182-1187. |
产祝龙, 施海涛, 王艳平. 狗牙根抗非生物胁迫的研究进展. 草业科学, 2013, 30(8): 1182-1187. | |
2 | Abulaiti, Shi D S, Yang G, et al. Preliminary research report on the native Cynodon dactylon in Xinjiang. Journal of Xinjiang Agricultural University, 1998, 21(2): 124-127. |
阿不来提, 石定燧, 杨光, 等. 新疆野生狗牙根研究初报. 新疆农业大学学报, 1998, 21(2): 124-127. | |
3 | Qian Y L, Fry J D. Water relations and drought tolerance of four turfgrasses. Journal of the American Society for Horticultural Science, 1997, 122(1): 129-133. |
4 | Yang L L, Hua K, Zhang X X. Physiological response and spectral characteristics of tall fescue under different drought stress and CO2 concentrations. Chinese Journal of Grassland, 2014, 36(4): 72-78. |
杨璐璐, 华开, 张学霞. 不同CO2浓度及干旱胁迫下高羊茅的生理响应和光谱特征. 中国草地学报, 2014, 36(4): 72-78. | |
5 | Zhao Z J, Shan G L, Duan X H, et al. Study on spectral reflectance and physiological characteristics of three cool-season turfgrass under drought stress. Grassland and Turf, 2016, 36(6): 23-29. |
赵志军, 单贵莲, 段新慧, 等. 干旱胁迫对3种冷季型草坪草光谱反射率及生理特征的影响. 草原与草坪, 2016, 36(6): 23-29. | |
6 | Jiang Y, Liu H, Cline V. Correlations of leaf relative water content, canopy temperature, and spectral reflectance in perennial ryegrass under water deficit conditions. HortScience: A Publication of the American Society for Horticultural Science, 2009, 44(2): 459-462. |
7 | Chen G, Che W G, Jiang H. Turf hyperspectral analysis techniques and their applications. Yunnan: Yunnan Publishing Group Corporation, 2009: 25-26. |
陈功, 车伟光, 姜华. 草坪高光谱分析技术及其应用. 云南: 云南出版集团公司, 2009: 25-26. | |
8 | Jiang Y, Carrow R N. Broadband spectral reflectance models of turfgrass species and cultivars to drought stress. Crop Science, 2007, 47(4): 1611-1618. |
9 | Cen H, He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 2007, 18(2): 72-83. |
10 | Perkins J H, Tenge B, Honigs D E. Resolution enhancement using an approximate-inverse Savitzky-Golay smooth. Spectrochimica Acta Part B: Atomic Spectroscopy, 1988, 43(4/5): 575-603. |
11 | Pontes M J C, Santos S R B, Araujo M C U, et al. Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry. Food Research International, 2006, 39(2): 182-189. |
12 | Jia Z C, Wang Z J, Li X Y, et al. Marine sediment particle size classification based on the fusion of principal component analysis and continuous projection algorithm. Spectroscopy and Spectral Analysis, 2023, 43(10): 3075-3080. |
贾宗潮, 王子鉴, 李雪莹, 等. 主成分分析和连续投影融合的海洋沉积物粒度分类研究. 光谱学与光谱分析, 2023, 43(10): 3075-3080. | |
13 | Gou J, Liu G, He J. Estimation of SPAD values for potato leaves based on least squares support vector machine. Hunan Agricultural Sciences, 2021, 8(11): 82-86. |
苟静, 刘刚, 何敬. 基于最小二乘支持向量机的马铃薯叶片SPAD值估算. 湖南农业科学, 2021, 8(11): 82-86. | |
14 | Wang W D, Chang Q R, Wang Y N. Hyperspectral monitoring of anthocyanins relative content in winter wheat leaves. Journal of Triticeae Crops, 2020, 40(6): 754-761. |
王伟东, 常庆瑞, 王玉娜. 冬小麦叶片花青素相对含量高光谱监测. 麦类作物学报, 2020, 40(6): 754-761. | |
15 | He Y, Peng J Y, Liu F, et al. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 174-189. |
何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展. 农业工程学报, 2015, 31(3): 174-189. | |
16 | Niu F P, Li X G, Mamattursun·Eziz, et al. Hyperspectral estimation of soil organic carbon content in the west lakeside oasis of Bosten Lake based on successive projection algorithm. Journal of Zhejiang University (Agriculture & Life Sciences), 2021, 47(5): 673-682. |
牛芳鹏, 李新国, 麦麦提吐尔逊·艾则孜, 等. 基于连续投影算法的博斯腾湖西岸湖滨绿洲土壤有机碳含量的高光谱估算. 浙江大学学报(农业与生命科学版), 2021, 47(5): 673-682. | |
17 | Guo S, Chang Q R, Zhang Y M, et al. Hyperspectral estimation of maize nitrogen balance index by successive projection combined with SSA-ELM. Acta Agriculturae Boreali-Occidentalis Sinica, 2023, 32(1): 130-138. |
郭松, 常庆瑞, 张佑铭, 等. 连续投影与SSA-ELM结合的玉米氮平衡指数高光谱估测. 西北农业学报, 2023, 32(1): 130-138. | |
18 | Bannari A, Khurshid K S, Staenz K, et al. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3063-3074. |
19 | Katuwal K B, Yang H, Huang B. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging. Grass Research, 2023, 3(1): 4-16. |
20 | Wang P P. Hyperspectral prediction model for moisture content of ramie leaves based on SVR. Changsha: Hunan Agricultural University, 2020. |
汪佩佩. 基于SVR的苎麻叶片含水率高光谱预测模型. 长沙: 湖南农业大学, 2020. | |
21 | Guo R, Fu S, Hou M J, et al. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
郭芮, 伏帅, 侯蒙京, 等. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报, 2023, 32(4): 15-29. | |
22 | Jiang Y Y, Liu B W, Zhang C J, et al. Multi-variety maize maturity monitoring based on UAV multi-spectral images. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 84-91. |
姜友谊, 刘博伟, 张成健, 等. 利用无人机多光谱影像的多品种玉米成熟度监测. 农业工程学报, 2023, 39(20): 84-91. | |
23 | Yue Y K, Chen J F, Zhao L, et al. Inversion of chlorophyll content in ramie based on UAV multispectral remote sensing. Shandong Agricultural Sciences, 2023, 55(7): 152-158. |
岳云开, 陈建福, 赵亮, 等. 基于无人机多光谱遥感的苎麻叶绿素含量反演. 山东农业科学, 2023, 55(7): 152-158. | |
24 | Tao X Y, Zhu Y J, Su X X, et al. Estimation of nitrogen nutrition before flowering stage of winter wheat based on UAV multispectral imagery. Journal of Anhui Science and Technology University, 2023, 37(3): 50-59. |
陶新宇, 朱永基, 苏祥祥, 等. 基于无人机多光谱影像的冬小麦花前期氮素营养估测. 安徽科技学院学报, 2023, 37(3): 50-59. |
[1] | Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198. |
[2] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[3] | Hong-jian WEI, Jie DING, Ju-ming ZHANG, Wen YANG, Yong-qi WANG, Tian-zeng LIU. Changes in soil fungal community structure under bermudagrass turf in response to traffic stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 102-112. |
[4] | Xue-feng REN, Ya-bo DENG, Guo-zhang ZANG, Yi-qi ZHENG. A SSR marker analysis of genetic diversity and population genetic structure of bermudagrass in Henan Province [J]. Acta Prataculturae Sinica, 2022, 31(3): 60-70. |
[5] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[6] | SHU Bi-chao, YANG Yong, LIU Xue-yong, JIANG Yuan-li, XIANG Zuo-xiang, HU Long-xing. Effect of low temperature stress on physiology and gene expression in Bermuda grass [J]. Acta Prataculturae Sinica, 2018, 27(11): 106-119. |
[7] | YANG Yong, LOU Yan-Hong, YANG Zhi-Jian, XIANG Zuo-Xiang, XU Qing-Guo, HU Long-Xing. Effect of low temperature on phytohormones and carbohydrates metabolism in Bermuda grass [J]. Acta Prataculturae Sinica, 2016, 25(2): 205-215. |
[8] | YE Shao-ping, ZENG Xiu-hua, XIN Guo-rong, BAI Chang-jun, LUO Ren-feng, LIU Xin-lu. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels [J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52. |
[9] | LIU Jun, ZHAO Qin, YANG Zhi-min. ISSR molecular markers analysis of 9 Bermudagrass cultivation varieties [J]. Acta Prataculturae Sinica, 2012, 21(6): 159-165. |
[10] | CHEN Jing-bo, LIU Jian-xiu. Salinity tolerance evaluation and mechanisms in bermudagrass (Cynodon spp.) [J]. Acta Prataculturae Sinica, 2012, 21(5): 302-310. |
[11] | ZHANG Xu, WANG Quan-zhen, CUI Jian, RAYMOND S A. Study on fertilizer and planting depth in bermudagrass sprigs growth and establishment [J]. Acta Prataculturae Sinica, 2011, 20(5): 237-244. |
[12] | LI Ya-nan, LUO Li-juan. A comparative study on the anatomical structure of leaves from different populations of bermudagrass [J]. Acta Prataculturae Sinica, 2010, 19(4): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||