Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (4): 186-198.DOI: 10.11686/cyxb2023193
Shuo LI1(), Pei-ying LI1,2,3(), Zong-jiu SUN1,2,3, Wen LI1
Received:
2023-06-09
Revised:
2023-08-28
Online:
2024-04-20
Published:
2024-01-15
Contact:
Pei-ying LI
Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress[J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198.
编号Code | 采集地点Collection location | 抗旱类型Drought resistance type |
---|---|---|
C32 | 新疆吐鲁番市托克逊县Tuokexun County, Turpan City, Xinjiang Autonomous Region | 敏旱型Drought sensitive |
C138 | 新疆喀什疏勒县Shule County, Kashgar City, Xinjiang Autonomous Region | 抗旱型Drought resistant |
Table 1 Materials details
编号Code | 采集地点Collection location | 抗旱类型Drought resistance type |
---|---|---|
C32 | 新疆吐鲁番市托克逊县Tuokexun County, Turpan City, Xinjiang Autonomous Region | 敏旱型Drought sensitive |
C138 | 新疆喀什疏勒县Shule County, Kashgar City, Xinjiang Autonomous Region | 抗旱型Drought resistant |
基因ID Gene ID | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
Actin | GCTCAACCCCAAGGCTAACAG | AGCGTATCCCTCGTAGATG |
c458080.graph_c0 | CGGTGCTGGTTGGGTAGTCTG | AAATGGCGGCAATAGCGAAAGC |
c452636.graph_c0 | CCCTGCCCAACGACGAAGAG | CATTGGCTTGGCGTGCTTGAG |
c422082.graph_c1 | GCCCATCACCGCCAATCCG | CAAACGCATTAGCAACGCAACG |
c448662.graph_c0 | GTGAGGTCCAGGCGGTGTTG | CGGCGAGTCGGTGTTCCTTG |
c443527.graph_c0 | TGCCCGTTGACCTGTCTTTCTC | AGCACTTCCTCCGCCATTTCG |
c460219.graph_c1 | GCGGCGAGCAATGATGTTACAG | AGATGGCTGGCGTTCTTGGC |
Table 2 Differential gene primer sequences
基因ID Gene ID | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
Actin | GCTCAACCCCAAGGCTAACAG | AGCGTATCCCTCGTAGATG |
c458080.graph_c0 | CGGTGCTGGTTGGGTAGTCTG | AAATGGCGGCAATAGCGAAAGC |
c452636.graph_c0 | CCCTGCCCAACGACGAAGAG | CATTGGCTTGGCGTGCTTGAG |
c422082.graph_c1 | GCCCATCACCGCCAATCCG | CAAACGCATTAGCAACGCAACG |
c448662.graph_c0 | GTGAGGTCCAGGCGGTGTTG | CGGCGAGTCGGTGTTCCTTG |
c443527.graph_c0 | TGCCCGTTGACCTGTCTTTCTC | AGCACTTCCTCCGCCATTTCG |
c460219.graph_c1 | GCGGCGAGCAATGATGTTACAG | AGATGGCTGGCGTTCTTGGC |
样品 Sample | 过滤后序列长度Clean datas length (bp) | GC含量 GC content (%) | 碱基质量>20 Q20 (%) | 碱基质量>30 Q30 (%) | 样品 Sample | 过滤后序列长度Clean datas length (bp) | GC含量 GC content (%) | 碱基质量>20 Q20 (%) | 碱基质量>30 Q30 (%) |
---|---|---|---|---|---|---|---|---|---|
CR138-1 | 5751481130 | 52.51 | 97.67 | 93.70 | MR32-1 | 7662111708 | 52.97 | 97.70 | 93.80 |
CR138-2 | 6361023526 | 52.89 | 97.81 | 94.00 | MR32-2 | 7405754772 | 52.73 | 97.77 | 93.94 |
CR138-3 | 5963989470 | 53.19 | 97.69 | 93.80 | MR32-3 | 7729678484 | 53.38 | 97.79 | 94.03 |
CR32-1 | 8694639522 | 51.96 | 98.29 | 95.02 | SR138-1 | 6680468588 | 52.06 | 97.67 | 93.72 |
CR32-2 | 7119356674 | 52.58 | 98.21 | 94.90 | SR138-2 | 6788905702 | 52.18 | 97.37 | 92.94 |
CR32-3 | 6517861366 | 51.93 | 97.87 | 94.05 | SR138-3 | 5945423404 | 52.11 | 97.86 | 94.16 |
MR138-1 | 9409664642 | 52.57 | 97.75 | 93.90 | SR32-1 | 6205146120 | 52.31 | 97.94 | 94.31 |
MR138-2 | 6314881976 | 52.21 | 97.70 | 93.72 | SR32-2 | 6469804754 | 52.11 | 97.86 | 94.08 |
MR138-3 | 6298108628 | 52.30 | 97.67 | 93.69 | SR32-3 | 6935579000 | 51.64 | 97.81 | 94.00 |
Table 3 Quality control of the transcriptomic data
样品 Sample | 过滤后序列长度Clean datas length (bp) | GC含量 GC content (%) | 碱基质量>20 Q20 (%) | 碱基质量>30 Q30 (%) | 样品 Sample | 过滤后序列长度Clean datas length (bp) | GC含量 GC content (%) | 碱基质量>20 Q20 (%) | 碱基质量>30 Q30 (%) |
---|---|---|---|---|---|---|---|---|---|
CR138-1 | 5751481130 | 52.51 | 97.67 | 93.70 | MR32-1 | 7662111708 | 52.97 | 97.70 | 93.80 |
CR138-2 | 6361023526 | 52.89 | 97.81 | 94.00 | MR32-2 | 7405754772 | 52.73 | 97.77 | 93.94 |
CR138-3 | 5963989470 | 53.19 | 97.69 | 93.80 | MR32-3 | 7729678484 | 53.38 | 97.79 | 94.03 |
CR32-1 | 8694639522 | 51.96 | 98.29 | 95.02 | SR138-1 | 6680468588 | 52.06 | 97.67 | 93.72 |
CR32-2 | 7119356674 | 52.58 | 98.21 | 94.90 | SR138-2 | 6788905702 | 52.18 | 97.37 | 92.94 |
CR32-3 | 6517861366 | 51.93 | 97.87 | 94.05 | SR138-3 | 5945423404 | 52.11 | 97.86 | 94.16 |
MR138-1 | 9409664642 | 52.57 | 97.75 | 93.90 | SR32-1 | 6205146120 | 52.31 | 97.94 | 94.31 |
MR138-2 | 6314881976 | 52.21 | 97.70 | 93.72 | SR32-2 | 6469804754 | 52.11 | 97.86 | 94.08 |
MR138-3 | 6298108628 | 52.30 | 97.67 | 93.69 | SR32-3 | 6935579000 | 51.64 | 97.81 | 94.00 |
长度Length | 转录本Transcript | 单基因Unigene |
---|---|---|
300~500 bp | 18373 | 11200 |
500~1000 bp | 28421 | 11052 |
1000~2000 bp | 35521 | 10442 |
>2000 bp | 33675 | 10887 |
总数Total | 115990 | 43581 |
总长度Total length (nt) | 189838956 | 63773469 |
N50 (bp) | 2321 | 2315 |
平均长度Mean length (nt) | 1636.68 | 1463.33 |
Table 4 Data assembly of the RNA-Seq results
长度Length | 转录本Transcript | 单基因Unigene |
---|---|---|
300~500 bp | 18373 | 11200 |
500~1000 bp | 28421 | 11052 |
1000~2000 bp | 35521 | 10442 |
>2000 bp | 33675 | 10887 |
总数Total | 115990 | 43581 |
总长度Total length (nt) | 189838956 | 63773469 |
N50 (bp) | 2321 | 2315 |
平均长度Mean length (nt) | 1636.68 | 1463.33 |
功能数据库 Annotation database | 被注释Unigene数 Annotated Unigene number | 300≤ 长度Length <1000 | 长度 Length ≥1000 |
---|---|---|---|
COG | 9436 | 2955 | 6481 |
GO | 24135 | 8902 | 15233 |
KEGG | 19248 | 6593 | 12655 |
KOG | 16086 | 5556 | 10530 |
Pfam | 22934 | 7878 | 15056 |
Swissprot | 17945 | 5537 | 12408 |
TrEMBL | 28867 | 10495 | 18372 |
eggNOG | 22752 | 7551 | 15201 |
NR | 32195 | 13237 | 18958 |
All | 33025 | 13855 | 19170 |
Table 5 Statistics of Unigenes annotated
功能数据库 Annotation database | 被注释Unigene数 Annotated Unigene number | 300≤ 长度Length <1000 | 长度 Length ≥1000 |
---|---|---|---|
COG | 9436 | 2955 | 6481 |
GO | 24135 | 8902 | 15233 |
KEGG | 19248 | 6593 | 12655 |
KOG | 16086 | 5556 | 10530 |
Pfam | 22934 | 7878 | 15056 |
Swissprot | 17945 | 5537 | 12408 |
TrEMBL | 28867 | 10495 | 18372 |
eggNOG | 22752 | 7551 | 15201 |
NR | 32195 | 13237 | 18958 |
All | 33025 | 13855 | 19170 |
1 | Eriyagama N, Smakhtin V, Gamage N. Mapping drought patterns and impacts: A global perspective. Colombo Sri Lanka: International Water Management Institute (IWMI) (Research Reports 133), 2009. |
2 | Huang B. Mechanisms and strategies for improving drought resistance in turfgrass. Acta Horticulturae, 2008, 783(6): 221-232. |
3 | Bian S, Jiang Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120(2): 264-270. |
4 | Merewitz E B, Gianfagna T, Huang B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. Journal of Experimental Botany, 2011, 62(15): 5311-5333. |
5 | Cao Y J, Wei Q, Liao Y, et al. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Reports, 2009, 28(4): 579-588. |
6 | Shi H T, Wang Y P, Cheng Z M, et al. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS One, 2012, 7(12): 12-20. |
7 | Lu S, Chen C, Wang Z, et al. Physiological responses of somaclonal variants of triploid bermudagrass (Cynodon transvaalensis×Cynodon dactylon) to drought stress. Plant Cell Reports, 2009, 28(3): 517-526. |
8 | Zhou Y, Lambrides C J, Shu F K. Drought resistance of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. Environmental and Experimental Botany, 2013, 41(5): 505-519. |
9 | Shabier A, Abudureyimu A, Younusi Q. Comparisons of drought resistance of six Xinjiang bermudagrass varieties.Journal of Xinjiang Agricultural University, 2008(2): 17-21. |
阿力木·沙比尔, 阿不来提·阿不都热依木, 齐曼·尤努斯. 6份新疆狗牙根抗旱性比较. 新疆农业大学学报, 2008(2): 17-21. | |
10 | Duan M M. Evaluation of drought resistance and physiological response of Xingjiang wild bermudagrass germplasm. Urumqi: Xinjiang Agricultural University, 2016. |
段敏敏. 新疆野生狗牙根种质抗旱性鉴定及抗旱生理的研究. 乌鲁木齐: 新疆农业大学, 2016. | |
11 | Zeng L S, Li P Y. Evaluation on drought resistance of 10 bermudagrass (Cynodon dactylon) germplasms from Xinjiang.Chinese Journal of Grassland, 2019, 41(3): 22-29. |
曾令霜, 李培英. 10份新疆狗牙根种质抗旱性评价. 中国草地学报, 2019, 41(3): 22-29. | |
12 | Zhou Y, Lambrides C J, Fukai S. Drought resistance of C4 grasses under field conditions: genetic variation among a large number of bermudagrass (Cynodon spp.) ecotypes collected from different climatic zones. Journal of Agronomy Crop Science, 2013, 199(4): 253-263. |
13 | Zeng L S, Li P Y, Sun X F, et al. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
曾令霜, 李培英, 孙晓梵, 等. 新疆不同生境狗牙根种质抗旱性综合评价. 草业学报, 2020, 29(8): 155-169. | |
14 | Zhang Y L, Yu Q K, Li W, et al. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
张一龙, 喻启坤, 李雯, 等. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应. 草业学报, 2023, 32(3): 163-178. | |
15 | Anders S, Huber W. Differential expression analysis for sequence count data. Nature Precedings, 2010, 11(10): R106. |
16 | Hou Z H, Yin J L, Lu Y F, et al. Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy, 2019, 9(10): 17-26. |
17 | Shao A, Wang W, Fan S G, et al. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biology, 2021, 21(1): 18-26. |
18 | Guan S J, Wang N, Xu R R, et al. Photosynthesis,antioxidant enzyme activity, and transcriptome sequencing analyses of Glyeyrrrhiza uralensis seedlings in response to drought stress. Pratacultural Science, 2021, 38(11): 2176-2190. |
关思静, 王楠, 徐蓉蓉, 等. 甘草幼苗响应干旱胁迫的光合、抗氧化特性及转录组分析.草业科学, 2021, 38(11): 2176-2190. | |
19 | Zhang J J, Li J J, Nian H J. The role of calcium/calmodulin signaling pathways in the stresses: Progress in researches. Chinese Journal of Microecology, 2013, 25(7): 858-860. |
张晶晶, 李金金, 年洪娟. 钙/钙调素信号途径在胁迫中的作用研究进展.中国微生态学杂志, 2013, 25(7): 858-860. | |
20 | He L. Relationship between 2C serine/threonine protein phosphatase activity and drought tolerance in maize. Chengdu: Sichuan Agricultural University, 2008. |
何亮. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶活性与耐旱性的关系.成都: 四川农业大学, 2008. | |
21 | Meskiene I, Baudouin E, Schweighofer A, et al. Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. Journal of Biological Chemistry, 2003, 278(21): 18945-18952. |
22 | Danquah A, De Zélicourt A, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 2014, 32(1): 40-52. |
23 | Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(5): 165-183. |
24 | Lin Y F, Li W, Dai L Y. Research progress of antioxidant enzymes functioning in plant drought resistant process. Crop Research, 2015, 29(3): 326-330. |
林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展.作物研究, 2015, 29(3): 326-330. | |
25 | Foyer C H, Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiology, 2011, 155(1): 2-18. |
26 | Song G F, Fan W L, Wang J J, et al.Cloning and characterization of drought-stress responsive gene GhGR in Gossypium hirsutum L. Scientia Agricultura Sinica, 2012, 45(8): 1644-1652. |
宋贵方, 樊伟丽, 王俊娟, 等. 陆地棉干旱胁迫响应基因GhGR的克隆及特征分析. 中国农业科学, 2012, 45(8): 1644-1652. | |
27 | Shan C J, Han R L, Liang Z S.Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the Loess Plateau of China.Chinese Journal of Plant Ecology, 2011, 35(6): 653-662. |
单长卷, 韩蕊莲, 梁宗锁.黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应. 植物生态学报, 2011, 35(6): 653-662. | |
28 | Kim C, Lemke C, Paterson A H. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. Plant Molecular Biology, 2009, 70(2): 1-16. |
29 | Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15(1): 63-78. |
30 | Guo H, Wang Y, Wang L, et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnology Journal, 2017, 15(1): 107-121. |
31 | Hu L X, Li H Y, Chen L, et al. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics, 2015, 16: 1-12. |
32 | Yuan X, Huang P, Wang R, et al. A zinc finger transcriptional repressor confers pleiotropic effects on rice growth and drought tolerance by down-regulating stress-responsive genes. Plant Cell Physiology, 2018, 59(10): 2129-2142. |
[1] | Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region [J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84. |
[2] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[3] | Bing ZENG, Pan-pan SHANG, Bing-na SHEN, Yin-chen WANG, Ming-hao QU, Yang YUAN, Lei BI, Xing-yun YANG, Wen-wen LI, Xiao-li ZHOU, Yu-qian ZHENG, Wen-qiang GUO, Yan-long FENG, Bing ZENG. Differentially expressed genes and related pathways in root systems of Dactylis glomerata under flooding stress [J]. Acta Prataculturae Sinica, 2024, 33(2): 93-111. |
[4] | Ji-mei ZHAO, Xia-song HU, Jiang-tao FU, Chang-yi LIU, Guang-yan XING, Fu-cheng YANG, Pei-hao ZHANG, Zhe ZHOU. Vegetation distribution patterns and root mechanical properties of selected plant species on the Xijitan giant landslide in the upper reaches of the Yellow River [J]. Acta Prataculturae Sinica, 2024, 33(1): 33-49. |
[5] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[6] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[7] | Yan WEI, You-bin LIU, Xiao-hong LIU, Yun CHEN, Zhe-hao YAN, Yi-zhi DU. Study on shear strength of root-soil composite of Dolichos lablab and Medicago sativa in purple soil region [J]. Acta Prataculturae Sinica, 2023, 32(8): 82-90. |
[8] | Jing-jing JIANG, Ai-chang CHEN, Zhou-quan WEI, Xing-ming SUN, Mei-rong XU, Xue-ping LI, Hui DU, Yong-hong QI. Identification of Fusarium species from Scutellaria baicalensis root rot in Longxi, Gansu Province and effects on element contents of root [J]. Acta Prataculturae Sinica, 2023, 32(7): 109-121. |
[9] | Rui-jie YANG, Shu-qin HE, Shu-feng ZHOU, Jing-yue YANG, Yu-xian JIN, Zi-cheng ZHENG. Root regulation of soil scourability in hybrid sorghum grass during the growing period [J]. Acta Prataculturae Sinica, 2023, 32(7): 149-159. |
[10] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[11] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[12] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[13] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[14] | Xiao-ming CHEN, Dong-ying HAN, Gui-long SONG. Effect of arsenic stress on arsenic uptake and root morphological changes in seashore paspalum [J]. Acta Prataculturae Sinica, 2023, 32(6): 112-119. |
[15] | Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis [J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||