Reference: [1] Han J Q, Wang X F, Zhang G Z. Effects of surface soil drought on root spatial distribution and activity of white clovers[J]. Chinese Agricultural Science Bulletin, 2007, 23(3): 458-461.[2] Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post drought recovery[J]. Journal of American Society for Horticultural Science, 2011, 136: 247-255.[3] Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science, 2001, 161: 1135-1144.[4] Li Z, Peng Y, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 257-263.[5] Lu S Y, Su W, Li H H, et al. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2 and NO-induced antioxidant enzyme activities[J]. Plant Physiology and Biochemistry, 2009, 47: 132-138.[6] Kubis J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water stressed cucumber leaves[J]. Journal of Plant Physiology, 2008, 165: 397-406.[7] Ma C, Wang Z Q, Kong B B, et al. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery[J]. Plant Growth Regulation, 2013, 70: 275-285.[8] Chai H, Li H, Huang X Y, et al. Drought Resistance of white clover plants[J]. Farming technology and consultancy, 2012, 12: 214.[9] Spichett C M, Smirnoff N, Ratcliffe R G. An in vivo nuclear magneticresonance investigation of ion transport in maize (Zea mays) and spartina anglica roots during exposure to high salt concentrations[J]. Plant Physiology, 1993, 102: 629-638.[10] Cai J Y, Ma Q, Zhou X R, et al. Physiological role of Na+in adaption of Zygophyllum xanthoxylum to osmotic stress[J]. Acta Prataculturae Sinica, 2011, 20(1): 89-95.[11] Wang S M, Wan C G, Wang Y R. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56: 525-539.[12] Ma Q, Lou J Q, Wang S M. Effect of Na+ on photosynthetic characteristics of Zygophyllum xanthonylom seedlings under osmotic stress[J]. Acta Prataculturae Sinica, 2010, 19(3): 198-203.[13] Glenn E P, Brown J J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany, 1998, 85: 10-16.[14] Sobbarao G V, Ito O, Berry W L, et al. Sodium-A functional plant nutrient[J].Critical Reviews in Plant Sciences, 2003, 22: 391-416.[15] Jin Z M, Sha W. Study on drought Resistance of trifolium repens linn seedlings[J]. Northern Horticulture, 2010, 18: 50-52.[16] Barrs H D, Weatherley P E. A reexamination of the relative turgidity techniques for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15: 413-428.[17] Zou Q. Plant physiology experimental guidance[M]. Beijing: China Agriculture Press, 2000: 161-174.[18] Han J J, Kang Z L, Yu Y. Plant physiology and experimental techniques[M]. Beijing: Chemical Industry Press, 2006.[19] Uchida A, Andre T I, Takashi H. Effects of hydrogen peroxide and nitricoxideon both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523.[20] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32: 93-101.[21] Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59: 309-314.[22] Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods in Enzymology, 1955, 2: 764-775.[23] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiology, 1981, 22(5): 867-880. [24] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science, 1981, 21: 43-47.[25] Mustapha E, Ahmadou M V, Hahib K. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit[J]. Acta Physiologiae Plantarum, 2009, 31: 711-721.[26] Hrishikesh U, Sanjib K P, Biman K D. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30: 457-468.[27] Peng Y, Li Z. Effects of drought preconditioning on physiological responses to heat stress in two Kentucky bluegrasses[J]. Acta Prataculturae Sinica, 2013, 22(5): 229-238.[28] Xu Y, Wei X H, Li B B, et al. Effects of exogenous nitric oxide on seed germination and seedling oxidative damage in Medicago sativa under NaCl stress[J]. Acta Prataculturae Sinica, 2013, 22(5): 145-153.[29] Saha P, Chatterjee P, Biswas A K. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L.)[J]. Indian Journal of Experimental Biology, 2010, 48(6): 593-600.[30] Zhang B L, Shang S H, Zhang H T, et al. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti oxidative enzyme activity in tobacco[J]. Environmental toxicology and chemistry, 2013, 32(6): 1420-1425.[31] Li S X, Zhou X R, Wang S M. Positive functions of sodium in plants[J]. Journal of Desert Research, 2008, 28(3): 485-490.[32] Martinez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycol induced water stress in the halophyte species Atriplex halimus L.[J]. Journal of Experimental Botany, 2005, 419(56): 2421-2431.[33] Wang S M, Zheng W J, Ren J Z, et al. Selectivity of various types of salt resistant plants K+ over Na+[J]. Journal of Arid Environment, 2002, 52: 457-472.[34] Zhang J L, Chen T X, Wang S M. Distribution characteristics of free amino acids and free proline in several drought-resistant plants of alxa desert, China[J]. Journal of Desert Research, 2004, 24(4): 493-499.[35] Li J P, Yang X G, Fu H. The content and distribution characteristics of some osmotic adjusting materials in three apecies of desert plants in Alashan Desert of Northwest China[J]. Pratacultural Science, 2005, 22(19): 35-38.[36] Zhao K F, Li F Z. China halophytes[M]. Beijing: Science Press, 1999. 参考文献:[1] 韩建秋, 王秀峰, 张国志. 表土干旱对白三叶根系分布和根活力的影响[J]. 中国农学通报, 2007, 23(3): 458-461.[2] Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of American Society for Horticultural Science, 2011, 136: 247-255.[3] Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science, 2001, 161: 1135-1144.[4] 李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 22(2): 257-263.[5] Lu S Y, Su W, Li H H, et al. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities[J]. Plant Physiology and Biochemistry, 2009, 47: 132-138.[6] Kubis J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves[J]. Journal of Plant Physiology, 2008, 165: 397-406.[7] Ma C, Wang Z Q, Kong B B, et al. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery[J]. Plant Growth Regulation, 2013, 70: 275-285.[8] 柴华, 李红, 黄新育, 等. 白三叶植物抗旱性的研究[J]. 养殖技术与顾问, 2012, 12: 214.[9] Spichett C M, Smirnoff N, Ratcliffe R G. An in vivo nuclear magnetic resonance investigation of ion transport in maize (Zea mays) and spartina anglica roots during exposure to high salt concentrations[J]. Plant Physiology, 1993, 102: 629-638.[10] 蔡建一, 马清, 周向睿, 等. Na+在霸王适应渗透胁迫中的生理作用[J]. 草业学报, 2011, 20(1): 89-95.[11] Wang S M, Wan C G, Wang Y R. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56: 525-539.[12] 马青, 楼洁琼, 王锁民. Na+对渗透胁迫下霸王幼苗光合特性的影响[J]. 草业学报, 2010, 19(3): 198-203.[13] Glenn E P, Brown J J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany, 1998, 85: 10-16.[14] Sobbarao G V, Ito O, Berry W L, et al. Sodium-A functional plant nutrient[J].Critical Reviews in Plant Sciences, 2003, 22: 391-416.[15] 金忠民, 沙伟. 白三叶抗旱生理的研究[J]. 北方园艺, 2010, 18: 50-52.[16] Barrs H D, Weatherley P E. A re-examination of the relative turgidity techniques for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15: 413-428.[17] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 161-174.[18] 郝建军, 康宗利, 于洋. 植物生理实验技术[M]. 北京: 化学工业出版社, 2006.[19] Uchida A, Andre T I, Takashi H. Effects of hydrogen peroxide and nitricoxideon both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523.[20] Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32: 93-101.[21] Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59: 309-314.[22] Chance B, Maehly A C. Assay of catalase and peroxidase[J]. Methods in Enzymology, 1955, 2: 764-775.[23] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiology, 1981, 22(5): 867-880. [24] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science, 1981, 21: 43-47.[25] Mustapha E, Ahmadou M V, Hahib K. Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit[J]. Acta Physiologiae Plantarum, 2009, 31: 711-721.[26] Hrishikesh U, Sanjib K P, Biman K D. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30: 457-468.[27] 彭燕, 李州. 干旱预处理对抗旱性不同的2个草地早熟禾品种耐热性能的影响[J]. 草业学报, 2013, 22(5): 229-238.[28] 徐严, 魏小红, 李兵兵, 等. 外源NO对NaCl胁迫下紫花苜蓿种子萌发及幼苗氧化性损伤的影响[J]. 草业学报, 2013, 22(5): 145-153.[29] Saha P, Chatterjee P, Biswas A K. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L.)[J]. Indian Journal of Experimental Biology, 2010, 48(6): 593-600.[30] Zhang B L, Shang S H, Zhang H T, et al. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco[J]. Environmental toxicology and chemistry, 2013, 32(6): 1420-1425.[31] 李三相, 周向睿, 王锁民. Na+在植物中的有益作用[J]. 中国沙漠, 2008, 28(3): 485-490.[32] Martinez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L.[J]. Journal of Experimental Botany, 2005, 419(56): 2421-2431.[33] Wang S M, Zheng W J, Ren J Z, et al. Selectivity of various types of salt-resistant plants K+ over Na+[J]. Journal of Arid Environment, 2002, 52: 457-472.[34] 张金林, 陈托兄, 王锁民. 阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征[J].中国沙漠, 2004, 24(4): 493-499.[35] 李景平, 杨鑫光, 傅华. 阿拉善荒漠3种旱生植物体内主要渗透调节物质的含量和分配特征[J]. 草业科学, 2005, 22(19): 35-38.[36] 赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999. |