[1] Janzen H H.Carbon cycling in earth systems-A soil science perspective. Agriculture Ecosystems and Environment, 2004, 104(3): 399-417. [2] Lal R.Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. [3] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290(5490): 291. [4] Jenkinson D S, Adams D E, Wild A.Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991, 351(6324): 304-306. [5] Watson R T, Noble I R, Bolin B, et al.Land use, land-use change and forestry: A special report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press, 2000. [6] Lal R.Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria. II. Soil chemical properties. Land Degradation and Development, 1996, 7(2): 87-98. [7] Ashagrie Y, Zech W, Guggenberger G, et al. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil and Tillage Research, 2007, 94(1): 101-108. [8] Berhongaray G, Alvarez R, Paepe J D, et al. Land use effects on soil carbon in the Argentine Pampas. Geoderma, 2013, 192(1): 97-110. [9] Twongyirwe R, Sheil D, Majaliwa J G M, ,et al. Variability of soil organic carbon stocks under different land uses: A study in an afro-montane landscape in southwestern Uganda. Geoderma, 2013, 193/194(2): 282-289. [10] Lal R.Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change, 2001, 51(1): 35-72. [11] Degryze S, Six J, Paustian K, et al. Soil organic carbon pool changes following land-use conversions. Global Change Biology, 2010, 10(7): 1120-1132. [12] Cantarello E, Newton A C, Hill R A.Potential effects of future land-use change on regional carbon stocks in the UK. Environmental Science and Policy, 2011, 14(1): 40-52. [13] Li Y Q, Brandle J, Awada T, et al. Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China’s Horqin Sandy Land. Agriculture Ecosystems and Environment, 2013, 177: 75-84. [14] Zhang C, Liu G B, Xue S, et al. Soil organic carbon and total nitrogen storage as affected by land use; in a small watershed of the Loess Plateau, China. European Journal of Soil Biology, 2013, 54(1): 16-24. [15] Yu S S, Dou S, Yang J M.Application of CENTURY model in the research of soil organic carbon. Soil and Crop, 2014, (1): 10-14. 于沙沙, 窦森, 杨靖民. CENTURY模型在土壤有机碳研究中的应用. 土壤与作物, 2014, (1): 10-14. [16] Steffen W L, Walker B H, Ingram J S, et al. Global change and terrestrial ecosystems: The operational plan. IGBP report no 21. Stockholm: International Geosphere-Biosphere Programme, 1992. [17] Batjes N H, Sombroek W G.Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 2010, 3(2): 161-173. [18] Bhattacharyya T, Pal D K, Williams S, et al. Evaluating the Century C model using two long-term fertilizer trials representing humid and semi-arid sites from India. Agriculture Ecosystems and Environment, 2010, 139(1): 264-272. [19] Cep C, Paustian K M, Victoria R L, et al. Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biology, 2004, 10(5): 815-832. [20] Cerri C E P, Easter M, Paustian K, et al. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models. Agriculture Ecosystems and Environment, 2007, 122(1): 46-57. [21] Cerri C E P, Easter M, Paustian K, et al. Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agriculture Ecosystems and Environment, 2007, 122(1): 58-72. [22] Tornquist C G, Gassman P W, Mielniczuk J, et al. Spatially explicit simulations of soil C dynamics in Southern Brazil: Integrating century and GIS with i_Century. Geoderma, 2009, 150(3): 404-414. [23] Tornquist C G, Mielniczuk J, Cerri C E P. Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century model. Soil and Tillage Research, 2009, 105(1): 33-43. [24] Xu W, Chen X, Luo G, et al. Using the CENTURY model to assess the impact of land reclamation and management practices in oasis agriculture on the dynamics of soil organic carbon in the arid region of North-western China. Ecological Complexity, 2011, 8(1): 30-37. [25] Parton W J, Rasmussen P E.Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations. Soil Science Society of America Journal, 1994, 58(2): 530-536. [26] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal, 1987, 51(5): 1173-1179. [27] Parton W J, Stewart J W B, Cole C V. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 1988, 5(1): 109-131. [28] Chilcott C R, Dalal R C, Parton W J, et al. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. IX*. Simulation of soil carbon and nitrogen pools using CENTURY model. Soil Research, 2007, 45(3): 206-217. [29] Muf K, Paul K I.Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biology and Biochemistry, 2002, 34(3): 341-354. [30] Paustian K, Elliott E T, Peterson G A, et al. Modelling climate, CO2 and management impacts on soil carbon in semi-arid agroecosystems. Plant and Soil, 1995, 187(2): 351-365. [31] Romanya J, Cortina J, Falloon P, et al. Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils. European Journal of Soil Science, 2010, 51(4): 627-641. [32] Zhao W L.Response of phenology, productivity and soil carbon stocks to climate change in northern Chinese steppes. Lanzhou: Lanzhou University, 2012. 赵文龙. 中国北方草原物候、生产力和土壤碳储量对气候变化的响应. 兰州: 兰州大学, 2012. [33] Pan M F, Jiang M, Zhou Z W.Latest research advances in biodegradation of lignin. Materials Review, 2011, (Supple 2): 372-377. 潘明凤, 姜曼, 周祚万. 木质素生物降解的最新研究进展. 材料导报, 2011, (增刊2): 372-377. [34] Liu X, Huang Q H, Jiang H L, et al. The decomposition processes of aquatic plant residue and the change of microbial community structure in a shallow lake sediment. Ecology and Environment Sciences, 2016, 25(3): 489-495. 刘新, 黄庆慧, 江和龙, 等. 浅水湖泊沉积物中水生植物残体降解过程及微生物群落变化. 生态环境学报, 2016, 25(3): 489-495. [35] Alister K M, Laura A H, Cole C V, et al.CENTURY soil organic matter model environment technical documentation agroecosystem version 4.0. GPSR technical report No.4, United States Department of Agriculture, Agricultrual Research Service, Great Plains Systems Research Unit. URL: http://www. nrel. colostate. edu/projects/century/, 1993. [36] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7(4): 785-809. [37] Gilmanov T G, Parton W J, Ojima D S.Testing the ‘CENTURY’ ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecological Modelling, 1997, 96(1/2/3): 191-210. [38] Mikhailova E A, Bryant R B, Degloria S D, et al. Modeling soil organic matter dynamics after conversion of native grassland to long-term continuous fallow using the CENTURY model. Ecological Modelling, 2000, 132(3): 247-257. [39] Bandaranayake W, Qian Y L, Parton W J, et al. Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agronomy Journal, 2003, 95(3): 537-548. [40] Foereid B, Barthram G T, Marriott C A.The CENTURY model failed to simulate soil organic matter development in an acidic grassland. Nutrient Cycling in Agroecosystems, 2007, 78(2): 143-153. [41] Gijsman A J, Oberson A, Tiessen H, et al. Limited applicability of the CENTURY model to highly weathered tropical soils. Agronomy Journal, 1996, 88(6): 894-903. [42] Jiang X H, Zhang C H, Wang C.Study on coupling of Century model and ArcGIS in grassland net primar productivity simulation. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, (6): 96-100. 姜新华, 张存厚, 王琛. 草原植被净初级生产力模拟中CENTURY模型与ArcGIS的耦合研究. 内蒙古农业大学学报(自然科学版), 2016, (6): 96-100. [43] Guo L H, Hao C Y, Wu S H, et al. Projected changes in vegetation net primary productivity of grassland in Inner Mongolia, China during 2011-2050. Chinese Journal of Applied Ecology, 2016, 27(3): 803-814. 郭灵辉, 郝成元, 吴绍洪, 等. 21世纪上半叶内蒙古草地植被净初级生产力变化趋势. 应用生态学报, 2016, 27(3): 803-814. [44] Guo L H, Hao C Y, Wu S H, et al. Analysis of changes in net primary productivity and its susceptibility to climate change of Inner Mongolian grasslands using the CENTURY model. Geographical Research, 2016, 35(2): 271-284. 郭灵辉, 郝成元, 吴绍洪, 等. 内蒙古草地NPP变化特征及其对气候变化敏感性的CENTURY模拟研究. 地理研究, 2016, 35(2): 271-284. [45] Li Q Y.Impacts of climate change and grazing on grassland in Inner Mongolia and adaptation strategies. Beijing: China Agricultural University, 2015. 李秋月. 气候变化及放牧对内蒙古草地的影响与适应对策. 北京: 中国农业大学, 2015. [46] Chen C, Wang J, Pan X B, et al. Validation and adaptability evaluation of grass ecosystem model CENTURY in Inner Mongolia. Acta Agrestia Sinica, 2012, 20(6): 1011-1019. 陈辰, 王靖, 潘学标, 等. CENTURY模型在内蒙古草地生态系统的适用性评价. 草地学报, 2012, 20(6): 1011-1019. [47] Zhang C H, Wang M J, Zhao X H, et al. Simulation of ANPP in response to climate change in China’s desert steppe based on CENTURY model. Chinese Journal of Ecology, 2014, 33(10): 2849-2857. 张存厚, 王明玖, 赵杏花, 等. 基于CENTURY模型的荒漠草原ANPP对气候变化响应的模拟. 生态学杂志, 2014, 33(10): 2849-2857. [48] Mo Z H, Li Y E, Gao Q Z.Simulation on productivity of main grassland ecosystems responding to climate change. Chinese Journal of Agrometeorology, 2012, 33(4): 545-554. 莫志鸿, 李玉娥, 高清竹. 主要草原生态系统生产力对气候变化响应的模拟. 中国农业气象, 2012, 33(4): 545-554. [49] Xiao X M, Wang Y F.Dynamic of primary productivity and soil organic matter of typical steppe in the Xilin River basin of Inner Mongolia and their response of climate change. Chinese Journal of Plant Ecology, 1996, (1): 45-52. 肖向明, 王义凤. 内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反映. 植物生态学报, 1996, (1): 45-52. [50] Li D.Modelling dynamics of soil organic carbon in alpine meadow by using CENTURY model. Nanjing: Nanjing Agricultural University, 2011. 李东. 基于CENTURY模型的高寒草甸土壤有机碳动态模拟研究. 南京: 南京农业大学, 2011. [51] Oelbermann M, Echarte L, Marroquin L, et al. Estimating soil carbon dynamics in intercrop and sole crop agroecosystems using the Century model. Journal of Plant Nutrition and Soil Science, 2017, 180(2): 241-251. [52] Leite L F C, Mendonca E D S, Neves J C L. Simulating trends in soil organic carbon of an Acrisol under no-tillage and disc-plow systems using the Century model. Geoderma, 2004, 120(3): 283-295. [53] Musinguzi P, Ebanyat P, Tenywa J S, et al. Using DSSAT-CENTURY model to simulate soil organic carbon dynamics under a low-input maize cropping system. Journal of Agricultural Science, 2014, 6(5): 120. [54] Gupta S, Kumar S.Simulating climate change impact on soil carbon sequestration in agro-ecosystem of mid-Himalayan landscape using CENTURY model. Environmental Earth Sciences, 2017, 76(11): 394. [55] Gao L P, Liang W J, Jiang Y, et al. Dynamics of organic C in black soil of Northeast China, simulated by CENTURY model I. Accumulation of soil organic carbon under natural conditions. Chinese Journal of Applied Ecology, 2004, 15(5): 772-776. 高鲁鹏, 梁文举, 姜勇, 等. 利用CENTURY模型研究东北黑土有机碳的动态变化Ⅰ. 自然状态下土壤有机碳的积累. 应用生态学报, 2004, 15(5): 772-776. [56] Fang H J, Yang X M, Zhang X P, et al. Simulation on dynamics of soil organic carbon under the effect of tillage and water erosion. Acta Pedologica Sinica, 2006, 43(5): 730-735. 方华军, 杨学明, 张晓平, 等. 耕作及水蚀影响下坡耕地土壤有机碳动态模拟. 土壤学报, 2006, 43(5): 730-735. [57] Gao C S, Yang G T, Wang J G, et al. The changing trend of organic carbon in black soil under different farming systems: A prediction by using Century model. Chinese Journal of Ecology, 2008, 27(6): 911-915. 高崇升, 杨国亭, 王建国, 等. 利用Century模型模拟不同农业经营模式下黑土农田土壤有机碳的演变. 生态学杂志, 2008, 27(6): 911-915. [58] Wang S H, Shi X Z, Zhao Y C, et al. Regional simulation of soil organic carbon dynamics for dry farmland in east China by coupling a 1∶500000 soil database with the Century model. Pedosphere, 2011, 21(3): 277-287. [59] Deng X Z, Jiang Q O, Lin Y Z, et al. Simulation of the changes of soil organic carbon stock of cropland in China. Geographical Research, 2010, 29(1): 93-101. 邓祥征, 姜群鸥, 林英志, 等. 中国农田土壤有机碳贮量变化预测. 地理研究, 2010, 29(1): 93-101. [60] Xu W Q, Chen X, Luo G P, et al. The impact of land reclamation and management practices on the dynamics of soil organic carbon in the arid region of North-western China as simulated by CENTURY model. Acta Ecologica Sinica, 2010, 30(14): 3707-3716. 许文强, 陈曦, 罗格平, 等. 基于CENTURY模型研究干旱区人工绿洲开发与管理模式变化对土壤碳动态的影响. 生态学报, 2010, 30(14): 3707-3716. [61] Mu T M.Forest ecosystems. Inner Mongolia Forestry, 1983, (11): 22-23. 穆天民. 森林生态系统. 内蒙古林业, 1983, (11): 22-23. [62] Huang Z L.Application of a CENTURY model to management effects in the productivity of forests in Dinghushan. Acta Phytoecologica Sinica, 2000, 24(2): 175-179. 黄忠良. 运用CENTURY模型模拟管理对鼎湖山森林生产力的影响. 植物生态学报, 2000, 24(2): 175-179. [63] Kelly R, Parton W, Crocker G, et al. Simulating trends in soil organic carbon in long-term experiments using the Century model. Geoderma, 1997, 81(1/2): 45-60. [64] Fang D M, Zhou G S, Jiang Y L, et al. Impact of fire on carbon dynamics of Larix gmelinii forest in Daxing’an Mountains of Northeast China: A simulation with CENTURY model. Chinese Journal of Applied Ecology, 2012, 23(9): 2411-2421. 方东明, 周广胜, 蒋延玲, 等. 基于CENTURY模型模拟火烧对大兴安岭兴安落叶松林碳动态的影响. 应用生态学报, 2012, 23(9): 2411-2421. [65] Lin Y B, Shen W J, Peng S L, et al. Simulation studies on carbon and nitrogen accumulation and its allocation pattern in forest ecosystems of Heshan in low subtropical China. Acta Phytoecologica Sinica, 2003, 27(5): 690-699. 林永标, 申卫军, 彭少麟, 等. 南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究. 植物生态学报, 2003, 27(5): 690-699. [66] Jiang Y L, Zhou G S.Carbon equilibrium in Larix gmelinii forest and impact of global change on it. Chinese Journal of Applied Ecology, 2001, 12(4): 481-484. 蒋延玲, 周广胜. 兴安落叶松林碳平衡和全球变化影响研究. 应用生态学报, 2001, 12(4): 481-484. |