[1] Pan J, Song N P, Wu X D, et al. Effects of different planting-years of artificial Caragana intermedia shrubs on soil organic carbon nitrogen and phosphorus stoichiometry characteristics in desert steppe. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2014, 41(2): 160-168. 潘军, 宋乃平, 吴旭东, 等. 荒漠草原不同种植年限人工柠条林土壤碳氮磷化学计量特征. 浙江大学学报(农业与生命科学版), 2014, 41(2): 160-168. [2] Zeng D P, Jiang L L, Zeng C S, et al. Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecologica Sinica, 2013, 33(18): 5484-5492. 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492. [3] Meharg A.Marschner’s mineral nutrition of higher plants. Experimental Agriculture, 2012, 48(2): 305. [4] Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8(6): 636-642. [5] Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439: 457-463. [6] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. [7] Yang K, Huang J H, Dong D, et al. Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(1): 17-22. 杨阔, 黄建辉, 董丹, 等. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 2010, 34(1): 17-22. [8] Liu C, Wang Y, Wang N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review. Chinese Journal of Plant Ecology, 2012, 36(11): 1205-1216. 刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 2012, 36(11): 1205-1216. [9] Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan desert. Acta Ecologica Sinica, 2014, 34(22): 6538-6547. 张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳, 氮, 磷化学计量特征. 生态学报, 2014, 34(22): 6538-6547. [10] Yu H L, Fan J W, Zhong H P, et al. Characteristics of N and P stoichiometry of plants in different functional groups in Qinghai-Tibet Plateau regions. Acta Ecologica Sinica, 2017, 37(11): 3755-3764. 于海玲, 樊江文, 钟华平, 等. 青藏高原区域不同功能群植物氮磷生态化学计量学特征. 生态学报, 2017, 37(11): 3755-3764. [11] Zhang L, Bai Y, Han X.Application of N∶P stoichiometry to ecology studies. Acta Botanica Sinica, 2003, 45(9): 1009-1018. [12] Braakhekke W G, Hooftman D A P. The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 2010, 10(2): 187-200. [13] Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships: A test across six biomes. Ecology, 1999, 80(6): 1955-1969. [14] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821. [15] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149(1): 115-122. [16] Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 2010, 136(4): 679-689. [17] Reich P B, Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. [18] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168(2): 377-385. [19] He J S, Wang L, Flynn D F B, et al. Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155(2): 301-310. [20] Fan J W, Zhang L X, Zhang W Y, et al. The spatial pattern of plant nitrogen and phosphorus in relation to climate factors in Chinese grassland transect. Acta Agrestia Sinica, 2014, 22(1): 1-6. 樊江文, 张良侠, 张文彦, 等. 中国草地样带植物氮磷元素空间格局及其与气候因子的关系. 草地学报, 2014, 22(1): 1-6. [21] Yang H M, Wang D M.Advances in the study on ecological stoichiometry in grass-environment system and its response to environment factor. Acta Prataculturae Sinica, 2011, 20(2): 244-252. 杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 2011, 20(2): 244-252. [22] Bao S D.Soil agro-chemistrical analysis. 3rd Edition. Beijing: China Agriculture Press, 2000: 264-270. 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000: 264-270. [23] Fang J Y.Quantitative evaluation of the influence of geographical factors on temperature distribution in China. Acta Ecologica Sinica, 1992, (2): 97-104. 方精云. 地理要素对我国温度分布影响的数量评价. 生态学报, 1992, (2): 97-104. [24] Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 2010, 31(8): 1716-1725. 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 2010, 31(8): 1716-1725. [25] Zhang W Y, Fan J W, Zhong H P, et al. The nitrogen: Phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 2010, 18(4): 503-509. 张文彦, 樊江文, 钟华平, 等. 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草地学报, 2010, 18(4): 503-509. [26] Wang T, Yang Y H, Ma W H.Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Sciences Edition), 2008, (6): 945-952. 汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 2008, (6): 945-952. [27] Wassen M J, Venterink H G M, Swart E. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems. Journal of Vegetation Science, 1995, 6(1): 5-16. [28] Aerts R, Chapin F S.The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30(8): 1-67. [29] Gusewell S.N∶P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2010, 164(2): 243-266. [30] Tessier J T, Raynal D J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 2003, 40(3): 523-534. [31] Zheng S X, Shangguan Z P.Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees, 2007, 21(3): 357-370. [32] Zhao N, He N, Wang Q, et al. The altitudinal patterns of leaf C∶N∶P stoichiometry are regulated by plant growth form, climate and soil on Changbai Mountain, China. PloS One, 2014, 9(4): e95196. [33] Zhou T X, Wang L, Cao M Z.Tectonic pattern of Ningxia and its formation and development. Acta Geographica Sinica, 1985, (3): 215-224. 周特先, 王利, 曹明志. 宁夏构造地貌格局及其形成与发展. 地理学报, 1985, (3): 215-224. [34] Ma L K.Practices and measures for adapting to climate change in Ningxia. China Population, Resources and Environment, 2015, 25(Supple 1): 240-243. 马力克. 宁夏适应气候变化的实践与措施. 中国人口·资源与环境, 2015, 25(增刊1): 240-243. [35] Aerts R.Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 1996, 84(4): 597-608. [36] Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71. |