[1] Diaz S, Cabido M.Vive la difference: Plant functional traits and environmental filters at a region scale. Trends in Ecology Evolution, 2001, 16(11): 644-655. [2] Wright I J, Reich P B, Westoby M, et al. The word wide leaf economi spectrum. Nature, 2004, 428: 821-827. [3] Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional. Oils, 2007, 116: 882-892. [4] Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61: 167-234. [5] Meng T T, Ni J, Wang G H.Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology, 2007, 31(1): 150-165. 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2007, 31(1): 150-165. [6] Niinemets U, Portsmuty A, Tobias M.Leaf size modifies support biomass distribution among stems petioles and mid-ribs in temperate plants. New Phytologist, 2006, 171(1): 91-104. [7] Wilson P J, Thompson K, Hodgson J G.Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 2002, 143(1): 155-162. [8] Fan H B, Wu J P, Liu W F, et al. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 2015, 392(1/2): 127-138. [9] Wang M, Murphy M T, Moore T R.Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia, 2014, 174(2): 365-377. [10] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10(12): 1135-1142. [11] Pan F J, Zhang W, Liu S J, et al. Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees, 2015, 29(3): 883-892. [12] Yu Q, Elser J J, He N P, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 2011, 166(1): 1-10. [13] Farahat E, Linderholm H W.Nutrient resorption efficiency and proficiency in economic wood trees irrigated by treated wastewater in desert planted forests. Agricultural Water Management, 2015, 155: 67-75. [14] Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 2015, 35(10): 1106-1117. [15] Canadell J, Lopez S L.Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Functional Ecology, 2010, 12(1): 31-38. [16] Ma Y Q. Flora of Inner Mongolia (2nd Edition). Hohhot: Inner Mongolia people’s publishing house, 1988. 马毓泉. 内蒙古植物志(第2版). 呼和浩特: 内蒙古人民出版社, 1988. [17] Cui N J, Liu X B, Zhang D J, et al. The distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages. Ecology and Environmental Sciences, 2014, 23(2): 188-195. 崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征. 生态环境学报, 2014, 23(2): 188-195. [18] Zeng D H, Chen G S, Chen F S, et al. Foliar nutrients and their resorption efficiencies in four Pinus sylvestris L.plantations of different ages on sandy soil. Scientia Silvae Sinicae, 2005, 41(5): 21-27. 曾德慧, 陈广生, 陈伏生, 等. 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 2005, 41(5): 21-27. [19] Zhou Y J, Liu C L, Feng J C, et al. Advances of drought-resistance and frigid-resistance mechanism research on Ammopiptanthus mongolicus. Journal of Desert Research, 2001, 21(3): 312-315. 周宜君, 刘春兰, 冯金朝, 等. 沙冬青抗旱、抗寒机理的研究进展. 中国沙漠, 2001, 21(3): 312-315. [20] Fei Y B, Sun L H.Isolation and identification of highly active antifreeze proteins in Ammopiptanthus mongolicus. Journal of Plant, 1994, 36(8): 649-650. 费云标, 孙龙华. 沙冬青高活性抗冻蛋白的分离和鉴别. 植物学报, 1994, 36(8): 649-650. [21] Pan B R, Yi L K.Comprehensive evaluation and rational utilization of rare and endangered plant resources in arid and desert regions of China. Arid Zone Research, 1991, (3): 29-39. 潘伯荣, 伊林克. 我国干旱荒漠区珍惜濒危植物资源的综合评价及合理利用. 干旱区研究, 1991, (3): 29-39. [22] Ma Y J, Duan H R, Cao Z Z, et al. Stress resistance of Ammopiptanthus mongolicus seeds during of germination period. Journal of Desert Research, 2011, 31(4): 963-967. 马彦军, 段慧荣, 曹致中, 等. 沙冬青种子萌发期抗逆性研究. 中国沙漠, 2011, 31(4): 963-967. [23] Dong X.Studies on stumping technology of Ammopiptanthus mongolicus and physil-biochemical characteristic to clipping. Hohhot: Inner Mongolia Agricultural University, 2013. 董雪. 沙冬青平茬技术及刈割后生理生化特性研究. 呼和浩特: 内蒙古农业大学, 2013. [24] Bao S D.Soil agrochemical analysis (Third Edition). Beijing: China Agricultural Press, 2000. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. [25] Grime J P, Cornelissen J H C, Thompson K, et al. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos, 1996, 77(3): 489-494. [26] Zhao X F, Xu H L, Zhang P, et al. Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland. Journal of Plant Ecology, 2014, 38(2): 134-146. 赵新风, 徐海量, 张鹏, 等. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 2014, 38(2): 134-146. [27] Luo L, Shen G Z, Xie Z Q, et al. Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia, China. Journal of Plant Ecology, 2011, 35(7): 722-730. 罗璐, 申国珍, 谢宗强, 等. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 2011, 35(7): 722-730. [28] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2010, 3(6): 540-550. [29] Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert. Journal of Ecology, 2013, 33(18): 5760-5767. 李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤 C、N、P 的化学计量特征. 生态学报, 2013, 33(18): 5760-5767. [30] Agren G I.Stoichiometry and nutrition of plant growth in natural communities. Annual Review Ecology, Evolution and Systematics, 2008, 39(39): 153-170. [31] Reich P B, Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. [32] Wang J Y, Wang S Q, Li R L, et al. C : N : P stoichiometric characteristics of four forest types’ dominant tree species in China. Journal of Plant Ecology, 2011, 35(6): 587-595. 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 2011, 35(6): 587-595. [33] Agren G I.The C:N:P stoichiometry of autotrophs theory and observations. Ecology Letters, 2004, 7(3): 185-191. [34] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151. [35] Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 2000, 55(5): 533-544. 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544. [36] Qing Y, Sun F D, Li Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47. 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47. |