[1] Wu C Z, Hong W, Jiang Z L, et al. Advances in research on forest litter-fall in China. Acta Agriculturae Universitatis Jiangxi, 2000, 22(3): 405-410. 吴承祯, 洪伟, 姜志林, 等. 我国森林凋落物研究进展. 江西农业大学学报, 2000, 22(3): 405-410. [2] Li J.Interactions between invertebrate and microbial communities in decomposing litter along with the change of altitude. Chengdu: Sichuan Agricultural University, 2016. 李俊. 凋落物分解过程中无脊椎动物与微生物群落的相互作用随海拔的变化特征. 成都: 四川农业大学, 2016. [3] Ma Z W, Wang Y X, Wang H, et al. Litter and its functions in grazing ecosystems. Acta Prataculturae Sinica, 2017, 26(7): 201-212. 马周文, 王迎新, 王宏, 等. 放牧生态系统枯落物及其作用. 草业学报, 2017, 26(7): 201-212. [4] Lin B, Liu Q, Wu Y, et al. Advances in the studies of forest litter. Chinese Journal of Ecology, 2004, 23(1): 60-64. 林波, 刘庆, 吴彦, 等. 森林凋落物研究进展. 生态学杂志, 2004, 23(1): 60-64. [5] Chen X, Liu Y, Deng J, et al. C, N and P stoichiometry at different stages of litter decomposition in subalpine forest of western Sichuan Province and interspecies comparison. Bulletin of Botanical Research, 2017, 37(2): 216-226. 谌贤, 刘洋, 邓静, 等. 川西亚高山森林凋落物不同分解阶段碳氮磷化学计量特征及种间差异. 植物研究, 2017, 37(2): 216-226. [6] Chapin F S, Matson P A, Mooney H A.Principles of terrestrial ecosystem ecology. New York: Springer, 2011: 369-397. [7] Jiang P P, Cao Y, Chen Y M, et al. N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province. Acta Ecologica Sinica, 2017, 37(2): 443-454. 姜沛沛, 曹扬, 陈云明, 等. 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征. 生态学报, 2017, 37(2): 443-454. [8] Yan H Y, Gu X R, Shen H.Microbial decomposition of forest litter: A review. Chinese Journal of Ecology, 2010, 29(9): 1827-1835. 严海元, 辜夕容, 申鸿. 森林凋落物的微生物分解. 生态学杂志, 2010, 29(9): 1827-1835. [9] Zuo W, He K N, Tian Y, et al. Surface litter stoichiometry for five forest types in alpine region, Qinghai, China. Chinese Journal of Ecology, 2016, 35(9): 2271-2278. 左巍, 贺康宁, 田赟, 等. 青海高寒区不同林分类型凋落物养分状况及化学计量特征. 生态学杂志, 2016, 35(9): 2271-2278. [10] Zhu J, Hu H, Tao S, et al. Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 2017, 8(1): 151-160. [11] Pan F J, Zhang W, Wang K L, et al. Litter C∶N∶P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster depression. Acta Ecologica Sinica, 2011, 31(2): 335-343. 潘复静, 张伟, 王克林, 等. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征. 生态学报, 2011, 31(2): 335-343. [12] Liu Q, Wang S L, Deng B L, et al. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in litters and soils on meadow of Wugong Mountain, Jiangxi, China at different altitudes. Chinese Journal of Applied Ecology, 2018, 29(5): 1535-1541. 刘倩, 王书丽, 邓邦良, 等. 武功山山地草甸不同海拔凋落物-土壤碳、氮、磷含量及其生态化学计量特征. 应用生态学报, 2018, 29(5): 1535-1541. [13] Jiang P P, Cao Y, Chen Y M, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation. Chinese Journal of Applied Ecology, 2016, 36(19): 6188-6197. 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征. 生态学报, 2016, 36(19): 6188-6197. [14] Zi H B, Xiang Z Y, Wang G X, et al. Profile of soil microbial community under different stand types in Qinghai Province. Scientia Silvae Sinicae, 2017, 53(3): 21-32. 字洪标, 向泽宇, 王根绪, 等. 青海不同林分土壤微生物群落结构(PLFA). 林业科学, 2017, 53(3): 21-32. [15] Xue F, Zhao M F, Kang M Y, et al. Influence of forest type and topographical factors on mineral elemental concentration of forest floor in the Taiyue Mountain. Journal of Beijing Normal University (Natural Science), 2017, 53(4): 493-498. 薛峰, 赵鸣飞, 康慕谊, 等. 林型和地形因子对太岳山森林地表凋落物矿质元素含量的影响. 北京师范大学学报(自然科学版), 2017, 53(4): 493-498. [16] Dong X.Evaluation of forest resources in Qinghai Province. Journal of Anhui Agricultural Sciences, 2009, 37(12): 5727-5728. 董旭. 青海省森林资源评价. 安徽农业科学, 2009, 37(12): 5727-5728. [17] Zhang Y L, Yang F W, Lu S W.Estimation on the economic values of the forest ecosystem service function in Qinghai Province. Journal of Northeast Forestry University, 2007, 35(11): 74-76. 张永利, 杨峰伟, 鲁绍伟. 青海省森林生态系统服务功能价值评估. 东北林业大学学报, 2007, 35(11): 74-76. [18] Yuan C G.Analysis of soil resource in Qinghai. Prataculture & Animal Husbandry, 2006, (6): 24-26. 袁春光. 青海土壤资源评析. 草业与畜牧, 2006, (6): 24-26. [19] Teccnical Manual Writing Group of Ecosystem Carbon Sequestration Project. Observation and investigation for carbon sequestration in terrstrial ecosystems. Beijing: Science Press, 2015. 生态系统固碳项目技术规范编写组. 生态系统固碳观测与调查技术规范. 北京: 科学出版社, 2015. [20] Tian X M, Zheng J W, Wang D Z, et al. Structural equation modeling analysis of the response of herbaceous species richness to landscape factors in a forest-steppe zone. Acta Ecologica Sinica, 2018, 38(13): 4649-4656. 田晓敏, 郑建伟, 王冬至, 等. 基于结构方程模型分析森林草原带草本物种丰富度对景观因子的响应. 生态学报, 2018, 38(13): 4649-4656. [21] Ashagrie Y, Zech W, Guggenberger G.Transformation of a Podocarpus falcatus, dominated natural forest into a monoculture Eucalyptus globulus, plantation at Munesa, Ethiopia: Soil organic C, N and S dynamics in primary particle and aggregate-size fractions. Agriculture Ecosystems & Environment, 2005, 106(1): 89-98. [22] Sterner R W, Elser J J.Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton, New Jersey: Peinceton University Press, 2002. [23] Ma Q Y, Chen X L, Wang J, et al. Carbon content rate in constructive species of main forest types in Northern China. Journal of Beijing Forestry University, 2002, 24(5): 96-100. 马钦彦, 陈遐林, 王娟, 等. 华北主要森林类型建群种的含碳率分析. 北京林业大学学报, 2002, 24(5): 96-100. [24] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. [25] Cotrufo M F, Wallenstein M D, Boot C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Chang Biology, 2013, 19(4): 988-995. [26] Guo Z L, Zheng J P, Ma Y D, et al. Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China. Acta Ecologica Sinica, 2006, 26(4): 71-80. 郭忠玲, 郑金萍, 马元丹, 等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 2006, 26(4): 71-80. [27] Wang J Y, Wang S Q, Li R L, et al. C∶N∶P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 2011, 35(6): 587-595. 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C∶N∶P化学计量学特征. 植物生态学报, 2011, 35(6): 587-595. [28] Bi J H, Su B L, Yu D P, et al. Ecological stoichiometry of different forest types in mountainous region of eastern Liaoning Province. Chinese Journal of Ecology, 2017, 36(11): 3109-3115. 毕建华, 苏宝玲, 于大炮, 等. 辽东山区不同森林类型生态化学计量特征. 生态学杂志, 2017, 36(11): 3109-3115. [29] Liu Q, Peng S L, Bi H, et al. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests. Journal of Beijing Forestry University, 2005, 1(1): 24-32. 刘强, 彭少麟, 毕华, 等. 热带亚热带森林凋落物交互分解的养分动态. 北京林业大学学报, 2005, 1(1): 24-32. [30] Zeng Z X, Wang K L, Liu X L, et al. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 2015, 39(7): 682-693. 曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 2015, 39(7): 682-693. [31] Kang H Z, Xin Z J, Berg B, et al. Global pattern of leaf litter nitrogen and phosphorus in woody plants. Annals of Forest Science, 2010, 67(8): 811-818. [32] Reich P B, Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001-11006. [33] Gao Z H, Zhang W L, Zhang Q F.General situation and prospect for the research on ecological functions of forest litter. Journal of Northeast Forestry University, 2004, 32(6): 79-80. 高志红, 张万里, 张庆费. 森林凋落物生态功能研究概况及展望. 东北林业大学学报, 2004, 32(6): 79-80. [34] Jang H M, Li M Z, Wang Q, et al. Dynamics of soil nutrients under different vegetation types in the eastern Qilian Mountains. Research of Soil and Water Conservation, 2011, 18(5): 166-170. 姜红梅, 李明治, 王亲, 等. 祁连山东段不同植被下土壤养分状况研究. 水土保持研究, 2011, 18(5): 166-170. [35] Shi X J, Pan J J, Chen J Y, et al. Effects of different types of litters on soil organic carbon mineralization. Chinese Journal of Environmental Science, 2009, 30(6): 1832-1837. 史学军, 潘剑君, 陈锦盈, 等. 不同类型凋落物对土壤有机碳矿化的影响. 环境科学, 2009, 30(6): 1832-1837. [36] Wang X J, Xiao D, Zhang K, et al. Leaf and root N∶P stoichiometry for common plants in a natural broadleaved Korean pine forest in Northeast China. Chinese Journal of Ecology, 2015, 34(12): 3283-3288. 王晓洁, 肖迪, 张凯, 等. 凉水天然阔叶红松林植物叶片与细根的N∶P化学计量特征. 生态学杂志, 2015, 34(12): 3283-3288. [37] Yuan Z Y, Chen H Y H. Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology & Biogeography, 2010, 18(5): 532-542. [38] Tang S S, Yang W Q, Wang H P, et al. Stoichiometric characteristics and controlling factors of N and P in forest leaf litter of China. Chinese Journal of Applied & Environmental Biology, 2015, 21(2): 316-322. 唐仕姗, 杨万勤, 王海鹏, 等. 中国森林凋落叶n、p化学计量特征及控制因素. 应用与环境生物学报, 2015, 21(2): 316-322. [39] Koerselman W.The vegetation N∶P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. [40] Si G C, Wang J, Xia Y Q, et al. Change characteristics of microbial communities and enzyme activities in soils of marshes in Nyaiqentanglha Mountains with heights above sea level. Wetland Science, 2014, (3): 340-348. 斯贵才, 王建, 夏燕青, 等. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征. 湿地科学, 2014, (3): 340-348. [41] Ma Y Y, Wang W Q.Carbon, nitrogen and phosphorus content and the ecological stoichiometric ratios of paddy field soil-plants in Minjiang River estuary. Subtropical Agriculture Research, 2011, 7(3): 182-187. 马永跃, 王维奇. 闽江河口区稻田土壤和植物的C、N、P含量及其生态化学计量比. 亚热带农业研究, 2011, 7(3): 182-187. [42] Korner C.Alpine plant life: Functional plant ecology of high mountain ecosystems; with 218 figures, 4 color plates and 47 tables. Berlin: Springer, 2003. [43] Aerts R.Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 1997, 79(3): 439-449. [44] Jiang P, Zhang G, Ye J, et al. Structure of forest communities on the northern slope of Changbai Mountain and its variation alone elevation gradients. Chinese Journal of Ecology, 2003, 22(6): 28-32. 姜萍, 赵光, 叶吉, 等. 长白山北坡森林群落结构组成及其海拔变化. 生态学杂志, 2003, 22(6): 28-32. [45] Zheng D, Yang Q Y.Some problems on the altitudinal belts in southeastern Qinghai-Xizang (Tibetan) Plateau. Institute of Geography, Chinese Academy of Sciences, 1985, 40(1): 60-69. 郑度, 杨勤业. 青藏高原东南部山地垂直自然带的几个问题. 地理学报, 1985, 40(1): 60-69. [46] Li X, Wang Z, Zhao J X, et al. Altitudinal variations in the sensitivity of alpine meadow productivity to temperature and precipitation changes along the southern slope of Nyainqentanglha Mountains. Acta Ecologica Sinica, 2017, 37(17): 5591-5601. 李翔, 王忠, 赵景学, 等. 念青唐古拉山南坡高寒草甸生产力对温度和降水变化的敏感性及其海拔分异. 生态学报, 2017, 37(17): 5591-5601. [47] Dwyer L M.Influence of topographic heterogeneity on deciduous litter decomposition. Oikos, 1981, 37(2): 228-237. [48] Koarashi J, Atarashi-Andoh M, Takeuchi E, et al. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by biologically mediated processes. Scientific Reports, 2014, 4: 6853-6890. [49] Zhao C, Long J, Li J, et al. Litter stock and nutrient characteristics of decomposing litter layers in Maolan Karst primary forest in different slope directions. Chinese Journal of Ecology, 2018, 37(2): 296-303. 赵畅, 龙健, 李娟, 等. 茂兰喀斯特原生林不同坡向及分解层的凋落物现存量和养分特征. 生态学杂志, 2018, 37(2): 296-303. [50] Jia B R, Zhou G S, Liu Y Z, et al. Spatial pattern and environmental controls of annual litterfall production in natural forest ecosystems in China. Science China: Life Sciences, 2016, 46(11): 1304-1311. 贾丙瑞, 周广胜, 刘永志, 等. 中国天然林凋落物量的空间分布及其影响因子分析. 中国科学: 生命科学, 2016, 46(11): 1304-1311. [51] Wang J J, Wang Y J, Lai L M, et al. Litter production and decomposition of different forest ecosystems and their relations to environmental factors in different climatic zones of mid and eastern China. Acta Ecologica Sinica, 2013, 33(15): 4818-4825. 王健健, 王永吉, 来利明, 等. 我国中东部不同气候带成熟林凋落物生产和分解及其与环境因子的关系. 生态学报, 2013, 33(15): 4818-4825. [52] Cao H.The hydrological function of the soil and litter for different artificial forest in alpine region of Qinghai. Beijing: Beijing Forestry University, 2014. 曹恒. 青海高寒区不同人工林地土壤和枯落物的水文功能研究. 北京: 北京林业大学, 2014. [53] Hornsby D C, Lockaby B G, Chappelka A H.Influence of microclimate on decomposition in loblolly pine stands: A field microcosm approach. Canadian Journal of Forest Research, 1995, 25(10): 1570-1577. [54] He J, Yang W Q, Ni X Y, et al. Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 2014, 38(6): 550-561. 何洁, 杨万勤, 倪祥银, 等. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响. 植物生态学报, 2014, 38(6): 550-561. [55] Finzi A C, Canham C D, Breemen N V.Canopy tree-soil interactions within temperate forests: Species effects on pH and cations. Ecological Applications, 1998, 8(2): 447-454. [56] Vitousek P M.Nutrient cycling and limitation: Hawai’i as a model system. Austral Ecology, 2005, 30: 609-614. |