草业学报 ›› 2019, Vol. 28 ›› Issue (9): 164-173.DOI: 10.11686/cyxb2018547
张智起1**, 张立旭1**, 徐炜1, 汪浩1, 王金洲1, 王娓1, 贺金生1,2,*
收稿日期:
2018-08-30
修回日期:
2018-10-08
出版日期:
2019-09-20
发布日期:
2019-09-20
通讯作者:
*E-mail: 作者简介:
张智起(1995-),男,安徽池州人,在读硕士。E-mail: zhangzhiqi@pku.edu.cn;张立旭(1993-),男,广东汕头人,硕士。E-mail: zhanglixu@pku.edu.cn。**共同第一作者
基金资助:
ZHANG Zhi-qi1**, ZHANG Li-xu1**, XU Wei1, WANG Hao1, WANG Jin-zhou1, WANG Wei1, HE Jin-sheng1,2,*
Received:
2018-08-30
Revised:
2018-10-08
Online:
2019-09-20
Published:
2019-09-20
Contact:
*E-mail: About author:
These authors contributed equally to this work.
摘要: 土壤呼吸是土壤有机碳返还至大气的主要形式,其对气候变暖的响应一直备受关注。近30年来,已有大量增温试验和模型就气候变暖对土壤呼吸的影响及其机制做了详细的探讨。但目前研究主要集中在土壤呼吸对浅层土壤增温的响应,对深层土壤的关注不足,且鲜有涉及土壤动物和土壤冻融过程,这些可能会减弱未来气候变暖背景下的CO2排放的预测能力。本研究提出几个目前气候变暖背景下土壤呼吸研究亟待解决的问题,包括:1)深层土壤呼吸对增温的响应;2)土壤动物对土壤呼吸的贡献及影响;3)土壤冻融过程对土壤呼吸的影响。通过综述这3个研究领域的现状,指出了当前该领域研究中存在的不足,提出了一些具体的改进措施并对今后的研究方向进行了展望,有助于深入理解土壤呼吸对气候变暖的响应过程和提高陆地生态系统碳循环模型的预测精度。
张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173.
ZHANG Zhi-qi, ZHANG Li-xu, XU Wei, WANG Hao, WANG Jin-zhou, WANG Wei, HE Jin-sheng. Several important issues of soil respiration under climate warming[J]. Acta Prataculturae Sinica, 2019, 28(9): 164-173.
[1] Cheng L F, He Z B, Du J, 陈龙飞, 何志斌, 杜军, 等. 土壤碳循环主要过程对气候变暖响应的研究进展. 草业学报, 2015, 24(11): 183-194. [2] Bond-Lamberty B, Thomson A.Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582. [3] Fang J Y, Wang W.Soil respiration as a key belowground process: Issues and perspectives. Journal of Plant Ecology, 2007, 31(3): 345-347. 方精云, 王娓. 作为地下过程的土壤呼吸:我们理解了多少? 植物生态学报, 2007, 31(3): 345-347. [4] Russell E J, Appleyard A.The atmosphere of the soil: Its composition and the causes of variation. Journal of Agricultural Science, 1915, 7(1): 1-48. [5] Greaves J E, Carter E G.Influence of moisture on the bacterial activities of the soil. Soil Science, 1920, 10(5): 361-387. [6] Lebedjantzev A N.Drying of soil, as one of the natural factors in maintaining soil fertility. Soil Science, 1924, 18(6): 419-447. [7] De Jong E, Schappert H J V. Calculation of soil respiration and activity from CO2 profiles in the soil. Soil science, 1972, 113(5): 328-333. [8] Golley F B, Odum H T, Wilson R F.The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology, 1962, 43(1): 9-19. [9] Bunt J S, Rovira A D.Oxygen uptake and carbon dioxide evolution of heat-sterilized soil. Nature, 1954, 173: 1242. [10] Drobník J.The effect of temperature on soil respiration. Folia Microbiologica, 1962, 7(2): 132-140. [11] Coleman D C.Compartmental analysis of “Total Soil Respiration”: An exploratory study. Oikos, 1973, 24(3): 361-366. [12] Mooney H A, Drake B G, Luxmoore R J, [13] Luo Y Q, Zhou X H.Soil respiration and the environment. California:Elsevier Academic Press, 2006. [14] Intergovernmental Panel on Climate Change.Climate change 2013:The physical science basis//Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Geneva:Cambridge University Press, 2013. [15] Liu S H, Fang J Y.Effects of factors of soil respiration and the temperature’s effects of soil respiration in the global scale. Acta Ecologica Sinica, 1997, 17(5): 469-476. 刘绍辉, 方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报, 1997, 17(5): 469-476. [16] Li D J, Zhou X H, Wu L Y, [17] Melillo J M, Frey S D, Deangelis K M, [18] Zhou J Z, Xue K, Xie J P, [19] Melillo J M.Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298: 2173-2176. [20] Xu X, Shi Z, Li D J, [21] Norby R J, Hartz-Rubin J S, Verbrugge M J. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 2003, 9(12): 1792-1801. [22] Suseela V, Dukes J S.The responses of soil and rhizosphere respiration to simulated climatic changes vary by season. Ecology, 2013, 94(2): 403-413. [23] Melillo J M, Butler S, Johnson J, [24] Chen J, Luo Y, Xia J, [25] Fang Y J, Hou X Y, Shi H X, 范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响.草业学报, 2012, 21(3): 294-302. [26] Lu M, Zhou X H, Yang Q, [27] Sistla S A, Moore J C, Simpson R T, [28] Friedlingstein P, Cox P M, Betts R A, [29] Friedlingstein P, Meinshausen M, Arora V K, [30] Fung I Y, Doney S C, Lindsay K, [31] Davidson E A, Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165-173. [32] Filser J, Faber J H, Tiunov A V, [33] Wang Y, Liu H Y, Chung H, [34] Jobbagy E G, Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436. [35] Fontaine S, Barot S, Barré P, [36] Wang Q, Wang Y, Wang S, [37] Hopkins F M, Torn M S, Trumbore S E.Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences, 2012, 109(26): 1753-1761. [38] Hicks P C E, Castanha C, Porras R C, et al. The whole-soil carbon flux in response to warming. Science, 2017, 355: 1420-1423. [39] Schoning I, Kogelknabner I.Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biology and Biochemistry, 2006, 38(8): 2411-2424. [40] Fierer N, Schimel J P, Holden P A.Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 2003, 35(1): 167-176. [41] Zhang H, Ye C L, Wang Y, 张浩, 叶成龙, 王益, 等.云雾山草原不同深度土壤的呼吸特征及其对温度变化的响应.草业科学, 2017, 34(2): 224-230. [42] Wang C, Yang Z J, Cheng G S, 王超, 杨智杰, 陈光水, 等. 土壤垂直剖面的CO2通量研究. 亚热带资源与环境学报, 2010, 5(4): 85-92. [43] Fierer N, Allen A S, Schimel J P, [44] Fang C M, Smith P, Moncrieff J B, [45] Gaudinski J B, Trumbore S E, Davidson E A, [46] Lupascu M, Welker J M, Seibt U, [47] Hicks Pries C E, Schuur E A G, Natali S M, et al. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change, 2016, 6(2): 214-218. [48] Cheng L, Zhang N F, Yuan M T, [49] Crowther T W, Todd-Brown K E O, Rowe C W, [50] Wu Z, Dijkstra P, Koch G W, [51] Liu H Y, Mi Z R, Lin L, [52] Vogel C, Mueller C W, Höschen C, [53] Keiluweit M, Bougoure J J, Nico P S, [54] Desutter T M, Sauer T J, Parkin T B, [55] Chen L Y, Liang J Y, Qin S Q, [56] Wang H, Yu L F, Zhang Z H, [57] Wang Y, Wang H, He J S, [58] Yin W Y.Review of soil zoology and it’s prospect. Bulletin of Biology, 2001, 36(8): 1-3. 尹文英. 土壤动物学研究的回顾与展望. 生物学通报, 2001, 36(8): 1-3 . [59] Petersen H, Luxton M.A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 1982, 39(3): 288-388. [60] Jiang Y, Wang B, Niu X, [61] Fu S L, Ferris H, Brown D, [62] Vossbrinck C R, Coleman D C, Woolley T A.Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology, 1979, 60(2): 265-271. [63] Wang X L, Yin X Q, Song B, 王星丽, 殷秀琴, 宋博, 等. 羊草草原主要凋落物分解及土壤动物的作用. 草业学报, 2011, 20(6): 143-149. [64] Gonzalez G, Ley R E, Schmidt S K, [65] Li Z A, Zou B, Ding Y Z, 李志安, 邹碧, 丁永桢, 等. 森林凋落物分解重要影响因子及其研究进展. 生态学杂志, 2004, 23(6): 77-83. [66] Crowther T W, Boddy L, Jones T H.Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecology Letters, 2011, 14(11): 1134-1142. [67] Filser J.The role of collembola in carbon and nitrogen cycling in soil. Pedobiologia, 2002, 46(3/4): 234-245. [68] Brown G G.How do earthworms affect microfloral and faunal community diversity? Plant and Soil, 1995, 170(1): 209-231. [69] Arnone J A, Zaller J G.Earthworm effects on native grassland root system dynamics under natural and increased rainfall. Frontiers in Plant Science, 2014, 5: 152. [70] Zhou X R, Guo Z G, Guo X H.The role of plateau pika and plateall zokor in alpine meadow. Pratacultural Science, 2010, 27(5): 38-44. 周雪荣, 郭正刚, 郭兴华. 高原鼠兔和高原鼢鼠在高寒草甸中的作用. 草业科学, 2010, 27(5): 38-44. [71] Bonkowski M, Villenave C, Griffiths B.Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 2009, 321(1/2): 213-233. [72] Kuzyakov Y.Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. [73] Wall D H.Sustaining biodiversity and ecosystem services in soils and sediments. Washington:Island Press, 2004. [74] De Deyn G B, Van der Putten W H. Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 2005, 20(11): 625-633. [75] Gholz H L, Wedin D A, Smitherman S M, [76] Schmidt M W, Torn M S, Abiven S, [77] Wall D H, Bradford M A, John M G, [78] Liu S, Yu G R, Qian Z S, 刘帅, 于贵瑞, 浅沼顺, 等. 蒙古高原中部草地土壤冻融过程及土壤含水量分布. 土壤学报, 2009, 46(1): 48-53. [79] Qin Y, Yi S H, Li N J, 秦彧, 宜树华, 李乃杰, 等. 青藏高原草地生态系统碳循环研究进展. 草业学报, 2012, 21(6): 275-285. [80] Elberling B, Brandt K K.Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biology and Biochemistry, 2003, 35(2): 263-272. [81] Sun H, Qin J H, Wu Y.Freeze-thaw cycles and their impacts on ecological process: A review. Soil, 2008, 40(4): 505-509. 孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展. 土壤, 2008, 40(4): 505-509. [82] Goldberg S D, Muhr J, Borken W, [83] Wu X, Shen Z Y.Effects of freezing-thawing cycle on greenhouse gases production and emission from soil: A review. Chinese Journal of Ecology, 2010, 29(7): 1432-1439. 伍星, 沈珍瑶. 冻融作用对土壤温室气体产生与排放的影响. 生态学杂志, 2010, 29(7): 1432-1439. [84] Feng X J, Nielsen L L, Simpson M J.Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biology and Biochemistry, 2007, 39(8): 2027-2037. [85] Larsen K S, Jonasson S, Michelsen A.Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 2002, 21(3): 187-195. [86] Lin L, Wang Q B, Zhang Z H, 林笠, 王其兵, 张振华, 等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环. 北京大学学报(自然科学版), 2017, 53(1): 171-178. [87] Oztas T, Fayetorbay F.Effect of freezing and thawing processes on soil aggregate stability. Catena, 2003, 52(1): 1-8. [88] Sharma S, Szele Z, Schilling R, [89] Cleavitt N L C L,Fahey T J F J, Groffman P M G M, et al. Effects of soil freezing on fine roots in a northern hardwood forest. Canadian Journal of Forest Research, 2008, 38(1): 82-91. |
[1] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[2] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[3] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[4] | 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14. |
[5] | 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2018, 27(1): 1-13. |
[6] | 王亚领, 李浩, 杨旋, 郭彦龙, 李维德. 基于MaxEnt模型和不同气候变化情景的单叶蔓荆潜在地理分布预测[J]. 草业学报, 2017, 26(7): 1-10. |
[7] | 张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14. |
[8] | 陈奕兆, 李建龙, 孙政国, 刚成诚. 欧亚大陆草原带1982-2008年间净初级生产力时空动态及其对气候变化响应研究[J]. 草业学报, 2017, 26(1): 1-12. |
[9] | 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2016, 25(12): 4-13. |
[10] | 马晓芳, 陈思宇, 邓婕, 冯琦胜, 黄晓东. 青藏高原植被物候监测及其对气候变化的响应[J]. 草业学报, 2016, 25(1): 13-21. |
[11] | 卢慧, 丛静, 刘晓, 王秀磊, 唐军, 李迪强, 张于光. 三江源区高寒草甸植物多样性的海拔分布格局[J]. 草业学报, 2015, 24(7): 197-204. |
[12] | 李东, 罗旭鹏, 曹广民, 吴琴, 卓玛措, 李惠梅, 杨永梅, 庞炳坤. 高寒草甸土壤异养呼吸对气候变化和氮沉降响应的模拟[J]. 草业学报, 2015, 24(7): 1-11. |
[13] | 赵军,马小平,魏伟. 近50年黑河流域潜在植被的演替及生态环境变化研究[J]. 草业学报, 2014, 23(5): 61-68. |
[14] | 罗金明,尹雄锐,叶雅杰,王永洁. 大中型土壤动物对内陆盐沼沿退化序列环境的指示研究[J]. 草业学报, 2014, 23(2): 287-295. |
[15] | 高立杰,侯建华,安哲,高宝嘉. 内蒙古高原东南缘森林草原交错带土壤动物群落特征[J]. 草业学报, 2013, 22(4): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||