草业学报 ›› 2021, Vol. 30 ›› Issue (2): 156-165.DOI: 10.11686/cyxb2020117
董利锋1(), 杨修竹2, 高彦华2, 李斌昌1,3, 王贝1,4, 刁其玉1()
收稿日期:
2020-03-13
修回日期:
2020-04-20
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
刁其玉
作者简介:
E-mail: diaoqiyu@caas.cn.基金资助:
Li-feng DONG1(), Xiu-zhu YANG2, Yan-hua GAO2, Bin-chang LI1,3, Bei WANG1,4, Qi-yu DIAO1()
Received:
2020-03-13
Revised:
2020-04-20
Online:
2021-02-20
Published:
2021-01-19
Contact:
Qi-yu DIAO
摘要:
本试验研究了日粮中不同中性洗涤纤维/非纤维性碳水化合物(NDF/NFC)水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征及甲烷产量的影响,并在此基础上建立了甲烷排放预测模型,旨在获得我国生产模型下的甲烷排放规律和甲烷转化因子,为提高奶牛能量利用效率、建立国家或区域性温室气体排放清单和探索减排策略提供科学依据和支撑。将45头体况良好,平均为15月龄的荷斯坦后备奶牛随机分为3组,每组15头牛:低日粮NDF/NFC组(NDF/NFC=0.60)、中日粮NDF/NFC组(NDF/NFC=0.75)和高日粮NDF/NFC组(NDF/NFC=0.90),试验期为70 d,包括14 d的预饲期和56 d的正试期。结果表明:1)提高日粮NDF/NFC水平显著降低了奶牛的干物质采食量、有机物采食量、平均日增重、干物质和粗蛋白的表观消化率(P<0.05);2)提高日粮NDF/NFC水平显著增加了瘤胃内总挥发性脂肪酸产量、乙酸的相对含量和乙酸/丙酸比例(P<0.05),显著降低了丙酸的相对含量(P<0.05);3)随着日粮NDF/NFC水平的提高,瘤胃甲烷和甲烷能产量、甲烷/代谢体重、甲烷/干物质采食量、甲烷/有机物采食量、甲烷/中性洗涤纤维采食量显著提高(P<0.05)。甲烷转化因子也随着日粮NDF/NFC水平的增加而显著提高(P<0.05);4)基于体重、采食量、营养物质含量和NDF/NFC分别建立了甲烷预测模型,其中基于干物质采食量和中性洗涤纤维采食量建立的预测模型的决定系数最高(R2=0.77)。因此,提高日粮中NDF/NFC水平可显著降低周岁后荷斯坦奶牛的生产性能、营养物质消化率和瘤胃内丙酸的相对含量,可显著提高瘤胃甲烷产量和甲烷转化因子。
董利锋, 杨修竹, 高彦华, 李斌昌, 王贝, 刁其玉. 日粮不同NDF/NFC水平对周岁后荷斯坦奶牛生产性能、营养物质消化率、瘤胃发酵特征和甲烷排放的影响[J]. 草业学报, 2021, 30(2): 156-165.
Li-feng DONG, Xiu-zhu YANG, Yan-hua GAO, Bin-chang LI, Bei WANG, Qi-yu DIAO. Effects of dietary NDF∶NFC ratio on growth performance, nutritive digestibility, ruminal fermentation characteristics and methane emissions of Holstein heifers[J]. Acta Prataculturae Sinica, 2021, 30(2): 156-165.
项目 Items | 处理组 Treatments | ||
---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |
原料 Ingredients | |||
全株玉米青贮 Corn silage (%) | 30 | 36 | 42 |
燕麦干草 Oat hay (%) | 10 | 12 | 14 |
苜蓿草 Alfalfa (%) | 10 | 12 | 14 |
精料补充料 Concentrate (%) | 50 | 40 | 30 |
合计 Total (%) | 100 | 100 | 100 |
营养水平 Nutritional level | |||
干物质 Dry matter (%) | 93.3 | 93.7 | 93.9 |
有机物 Organic matter (%) | 92.2 | 92.8 | 93.1 |
总能 Gross energy (MJ·kg-1) | 16.6 | 16.7 | 16.8 |
粗蛋白质 Crude protein (%) | 14.7 | 14.5 | 14.1 |
粗脂肪 Ether extract (%) | 3.8 | 3.8 | 3.7 |
粗灰分 Crude ash (%) | 7.8 | 7.2 | 6.9 |
中性洗涤纤维 Neutral detergent fiber (%) | 29.3 | 32.6 | 36.8 |
酸性洗涤纤维 Acid detergent fiber (%) | 14.8 | 17.5 | 19.8 |
钙 Ca (%) | 0.6 | 0.5 | 0.3 |
磷 Phosphorus (%) | 0.3 | 0.2 | 0.2 |
非结构性碳水化合物 Non-fibrous carbohydrate (%) | 48.03 | 44.18 | 41.24 |
中性洗涤纤维/非结构性碳水化合物 NDF/NFC | 0.60 | 0.75 | 0.90 |
表1 日粮基本组成及营养成分含量
Table 1 The composition and nutrient contents of experimental diet
项目 Items | 处理组 Treatments | ||
---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |
原料 Ingredients | |||
全株玉米青贮 Corn silage (%) | 30 | 36 | 42 |
燕麦干草 Oat hay (%) | 10 | 12 | 14 |
苜蓿草 Alfalfa (%) | 10 | 12 | 14 |
精料补充料 Concentrate (%) | 50 | 40 | 30 |
合计 Total (%) | 100 | 100 | 100 |
营养水平 Nutritional level | |||
干物质 Dry matter (%) | 93.3 | 93.7 | 93.9 |
有机物 Organic matter (%) | 92.2 | 92.8 | 93.1 |
总能 Gross energy (MJ·kg-1) | 16.6 | 16.7 | 16.8 |
粗蛋白质 Crude protein (%) | 14.7 | 14.5 | 14.1 |
粗脂肪 Ether extract (%) | 3.8 | 3.8 | 3.7 |
粗灰分 Crude ash (%) | 7.8 | 7.2 | 6.9 |
中性洗涤纤维 Neutral detergent fiber (%) | 29.3 | 32.6 | 36.8 |
酸性洗涤纤维 Acid detergent fiber (%) | 14.8 | 17.5 | 19.8 |
钙 Ca (%) | 0.6 | 0.5 | 0.3 |
磷 Phosphorus (%) | 0.3 | 0.2 | 0.2 |
非结构性碳水化合物 Non-fibrous carbohydrate (%) | 48.03 | 44.18 | 41.24 |
中性洗涤纤维/非结构性碳水化合物 NDF/NFC | 0.60 | 0.75 | 0.90 |
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组 Low NDF/NFC group | 中NDF/NFC组 Medium NDF/NFC group | 高NDF/NFC组 High NDF/NFC group | |||
月龄Month age | 14.9 | 14.6 | 14.7 | 0.33 | 0.965 |
体重 Body weight (kg) | 429.3 | 424.4 | 422.2 | 8.82 | 0.945 |
干物质采食量 Dry matter intake (DMI, kg·d-1) | 7.96a | 7.78b | 7.44c | 0.23 | 0.014 |
有机物采食量 Organic matter intake (OMI, kg·d-1) | 7.42a | 7.22b | 6.86c | 0.13 | <0.01 |
中性洗涤纤维采食量 Neutral detergent fiber intake (NDFI, kg·d-1) | 2.18c | 2.53b | 2.93a | 0.23 | 0.031 |
非结构性碳水化合物采食量 Non-fibrous carbohydrate intake (NFCI, kg·d-1) | 3.30a | 3.26a | 3.06b | 0.18 | <0.01 |
总能摄入量 Gross energy intake (GEI, kg·d-1) | 132.2a | 129.9b | 124.9c | 1.69 | <0.01 |
平均日增重 Average daily gain (ADG, kg·d-1) | 1.05a | 0.99a | 0.87b | 0.03 | 0.005 |
表2 日粮不同NDF/NFC水平对荷斯坦后备奶牛生产性能的影响
Table 2 Effects of dietary NDF/NFC contents on the growth performance of Holstein heifers
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组 Low NDF/NFC group | 中NDF/NFC组 Medium NDF/NFC group | 高NDF/NFC组 High NDF/NFC group | |||
月龄Month age | 14.9 | 14.6 | 14.7 | 0.33 | 0.965 |
体重 Body weight (kg) | 429.3 | 424.4 | 422.2 | 8.82 | 0.945 |
干物质采食量 Dry matter intake (DMI, kg·d-1) | 7.96a | 7.78b | 7.44c | 0.23 | 0.014 |
有机物采食量 Organic matter intake (OMI, kg·d-1) | 7.42a | 7.22b | 6.86c | 0.13 | <0.01 |
中性洗涤纤维采食量 Neutral detergent fiber intake (NDFI, kg·d-1) | 2.18c | 2.53b | 2.93a | 0.23 | 0.031 |
非结构性碳水化合物采食量 Non-fibrous carbohydrate intake (NFCI, kg·d-1) | 3.30a | 3.26a | 3.06b | 0.18 | <0.01 |
总能摄入量 Gross energy intake (GEI, kg·d-1) | 132.2a | 129.9b | 124.9c | 1.69 | <0.01 |
平均日增重 Average daily gain (ADG, kg·d-1) | 1.05a | 0.99a | 0.87b | 0.03 | 0.005 |
图1 日粮不同NDF/NFC水平对后备奶牛营养物质表观消化率的影响不同小写字母表示差异显著(P<0.05)。Different small letters mean significant differences (P<0.05).
Fig. 1 Effects of different dietary NDF/NFC levels on nutrient digestibility of heifers
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |||
pH | 6.39 | 6.54 | 6.41 | 0.047 | 0.064 |
氨态氮 NH3-N (mmol·L-1) | 7.85 | 7.64 | 7.72 | 0.231 | 0.057 |
总挥发性脂肪酸 Total volatile fatty acid (TVFA, mmol·L-1) | 113.60c | 127.40b | 136.80a | 3.520 | <0.01 |
乙酸 Acetate (%) | 66.72c | 69.13b | 71.06a | 0.302 | <0.01 |
丙酸 Propionate (%) | 16.86a | 15.45b | 13.16c | 0.109 | <0.01 |
丁酸 Butyrate (%) | 6.37a | 6.12b | 5.79c | 0.116 | <0.01 |
戊酸 Valerate (%) | 2.32 | 2.41 | 2.36 | 0.241 | 0.093 |
异戊酸Isovalerate (%) | 1.52 | 1.47 | 1.71 | 0.072 | 0.370 |
异丁酸isobutyrate (%) | 1.71 | 1.74 | 1.75 | 0.091 | 0.150 |
乙酸/丙酸 Acetate/propionate | 4.06c | 4.37b | 5.14a | 0.086 | <0.01 |
表3 日粮不同NDF/NFC水平对荷斯坦后备奶牛瘤胃发酵指标的影响
Table 3 Effects of dietary NDF/NFC contents on the ruminal fermentation parameters of Holstein heifers
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |||
pH | 6.39 | 6.54 | 6.41 | 0.047 | 0.064 |
氨态氮 NH3-N (mmol·L-1) | 7.85 | 7.64 | 7.72 | 0.231 | 0.057 |
总挥发性脂肪酸 Total volatile fatty acid (TVFA, mmol·L-1) | 113.60c | 127.40b | 136.80a | 3.520 | <0.01 |
乙酸 Acetate (%) | 66.72c | 69.13b | 71.06a | 0.302 | <0.01 |
丙酸 Propionate (%) | 16.86a | 15.45b | 13.16c | 0.109 | <0.01 |
丁酸 Butyrate (%) | 6.37a | 6.12b | 5.79c | 0.116 | <0.01 |
戊酸 Valerate (%) | 2.32 | 2.41 | 2.36 | 0.241 | 0.093 |
异戊酸Isovalerate (%) | 1.52 | 1.47 | 1.71 | 0.072 | 0.370 |
异丁酸isobutyrate (%) | 1.71 | 1.74 | 1.75 | 0.091 | 0.150 |
乙酸/丙酸 Acetate/propionate | 4.06c | 4.37b | 5.14a | 0.086 | <0.01 |
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |||
甲烷 CH4 (g·d-1) | 193.77c | 214.86b | 219.58a | 4.17 | <0.01 |
甲烷/代谢体重 CH4/metabolizable body weight (g·kg-1) | 2.02b | 2.26b | 2.39a | 0.06 | 0.013 |
甲烷/干物质采食量 CH4/dry matter intake (g·kg-1) | 16.92c | 19.94b | 23.17a | 0.78 | <0.01 |
甲烷/有机物采食量 CH4/organic matter intake (g·kg-1) | 18.20c | 21.54b | 24.95a | 0.84 | <0.01 |
甲烷/中性洗涤纤维采食量 CH4/neutral detergent fiber intake (g·kg-1) | 64.83c | 67.12b | 69.39a | 1.31 | 0.039 |
甲烷能CH4 energy (MJ·d-1) | 10.78c | 11.96b | 12.77a | 0.23 | <0.01 |
甲烷能/总能摄入量 CH4 energy/gross energy intake (MJ·MJ-1) | 0.0568c | 0.0665b | 0.0769a | 0.004 | <0.01 |
表4 日粮不同NDF/NFC水平对荷斯坦后备奶牛瘤胃甲烷产量的影响
Table 4 Effects of dietary NDF/NFC contents on the enteric methane emissions of Holstein heifers
项目 Items | 处理组 Treatments | SEM | P 值 P-value | ||
---|---|---|---|---|---|
低NDF/NFC组Low NDF/NFC group | 中NDF/NFC组Medium NDF/NFC group | 高NDF/NFC组High NDF/NFC group | |||
甲烷 CH4 (g·d-1) | 193.77c | 214.86b | 219.58a | 4.17 | <0.01 |
甲烷/代谢体重 CH4/metabolizable body weight (g·kg-1) | 2.02b | 2.26b | 2.39a | 0.06 | 0.013 |
甲烷/干物质采食量 CH4/dry matter intake (g·kg-1) | 16.92c | 19.94b | 23.17a | 0.78 | <0.01 |
甲烷/有机物采食量 CH4/organic matter intake (g·kg-1) | 18.20c | 21.54b | 24.95a | 0.84 | <0.01 |
甲烷/中性洗涤纤维采食量 CH4/neutral detergent fiber intake (g·kg-1) | 64.83c | 67.12b | 69.39a | 1.31 | 0.039 |
甲烷能CH4 energy (MJ·d-1) | 10.78c | 11.96b | 12.77a | 0.23 | <0.01 |
甲烷能/总能摄入量 CH4 energy/gross energy intake (MJ·MJ-1) | 0.0568c | 0.0665b | 0.0769a | 0.004 | <0.01 |
项目 Items | 预测模型 Prediction equations | 标准误差 Standard error | 决定系数 R2 | 编号No. |
---|---|---|---|---|
甲烷 CH4 (g·d-1) | =0.29(0.161)×BW (kg)+84.9(68.61) | 0.461 | 0.46 | 1 |
=51.72(4.640)×DMI (kg·d-1)-193.9(22.49) | 0.979 | 0.74 | 2 | |
=4.02(0.117)×NDF (%)-5.46(121) | 0.401 | 0.62 | 3 | |
=-30.2(2.41)×NFC/NDF+154.8(6.57) | 0.526 | 0.65 | 4 | |
甲烷能 CH4-energy (MJ·d-1) | =0.18(0.042)×GEI (MJ·d-1)-9.70(2.071) | 0.973 | 0.67 | 5 |
=1.71(0.129)×NDFI (kg·d-1)+0.146(0.251) | 0.661 | 0.61 | 6 | |
=-2.67(0.047)×NFCI (kg·d-1)+5.06(0.451) | 0.792 | 0.65 | 7 | |
=0.61(0.039)×DMI (kg·d-1)+0.645(0.053)×NDFI (kg·d-1)-0.19(0.472) | 0.973 | 0.77 | 8 |
表5 基于生产性能和营养物质摄入量的瘤胃甲烷产量预测模型
Table 5 Prediction equations of enteric methane emissions based on production performance, nutrient content and intake parameters
项目 Items | 预测模型 Prediction equations | 标准误差 Standard error | 决定系数 R2 | 编号No. |
---|---|---|---|---|
甲烷 CH4 (g·d-1) | =0.29(0.161)×BW (kg)+84.9(68.61) | 0.461 | 0.46 | 1 |
=51.72(4.640)×DMI (kg·d-1)-193.9(22.49) | 0.979 | 0.74 | 2 | |
=4.02(0.117)×NDF (%)-5.46(121) | 0.401 | 0.62 | 3 | |
=-30.2(2.41)×NFC/NDF+154.8(6.57) | 0.526 | 0.65 | 4 | |
甲烷能 CH4-energy (MJ·d-1) | =0.18(0.042)×GEI (MJ·d-1)-9.70(2.071) | 0.973 | 0.67 | 5 |
=1.71(0.129)×NDFI (kg·d-1)+0.146(0.251) | 0.661 | 0.61 | 6 | |
=-2.67(0.047)×NFCI (kg·d-1)+5.06(0.451) | 0.792 | 0.65 | 7 | |
=0.61(0.039)×DMI (kg·d-1)+0.645(0.053)×NDFI (kg·d-1)-0.19(0.472) | 0.973 | 0.77 | 8 |
1 | Niu M T, Kebreab E, Hristov A N, et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24(8): 3368-3389. |
2 | Yan T, Agnew R E, Gordon F J, et al. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, 2000, 64: 253-263. |
3 | Moorby J M, Dewhurst R J, Evans R T, et al. Effects of dairy cow diet forage proportion on duodenal nutrient supply and urinary purine derivative excretion. Journal of Dairy Science, 2006, 89: 3552-3562. |
4 | Zhou Y, Xu G S, Dong L F, et al. Effects of different dietary non-fiber carbohydrate (NFC)/neutral detergent fiber (NDF) on growth performance, nutrient apparent digestibility and methane emissions of growing dorper and thin-tailed han crossbred ewes. Chinese Journal of Animal Nutrition, 2018, 30(4): 1367-1376. |
周艳, 许贵善, 董利锋, 等. 不同饲养模式下饲粮非纤维性碳水化合物/中性洗涤纤维对生长期杂交母羊生长性能、营养物质表观消化率和甲烷产量的影响. 动物营养学报, 2018, 30(4): 1367-1376. | |
5 | Wang B, Xu G S, Li B C, et al. Effects of dietary NDF/NFC on rumen methane emissions, nutrient apparent digestibility and production performance of dairy cows during peak lactation period. China Feed, 2019, 9(1): 15-21. |
王贝, 许贵善, 李斌昌, 等. 饲粮NDF/NFC对泌乳高峰期奶牛瘤胃甲烷排放量、营养物质表观消化率及生产性能的影响. 中国饲料, 2019, 9(1): 15-21. | |
6 | Wang B, Li B C, Dong L F, et al. Effects of dietary NDF/NFC on rumen methane emissions, nutrient apparent digestibility and production performance of dairy cows during middle lactation period. Feed Industry Magazine, 2019, 40(9): 45-51. |
王贝, 李斌昌, 董利锋, 等. 饲粮NDF/NFC对泌乳中期奶牛瘤胃甲烷排放量、营养物质表观消化率及生产性能的影响. 饲料工业, 2019, 40(9): 45-51. | |
7 | Wang B, Xu G S, Li B C, et al. Effects of dietary NDF/NFC on rumen methane emissions, nutrient apparent digestibility and production performance of dairy cows during late lactation period. Chinese Journal of Animal Science, 2019, 55(4): 1-8. |
王贝, 许贵善, 李斌昌, 等. 饲粮NDF/NFC对泌乳后期奶牛瘤胃甲烷排放量、营养物质表观消化率及生产性能的影响. 中国畜牧杂志, 2019, 55(4): 1-8. | |
8 | Jonker A, Farrell L, Scobie D, et al. Methane and carbon dioxide emissions from lactating dairy cows grazing mature ryegrass/white clover or a diverse pasture comprising ryegrass, legumes and herbs. Animal Production Science, 2019, 59(6):1063-1069. |
9 | Gao Y Y. Difference in different growth stages of Simmental hybrid beef cattle emission N, P and methane. Zhengzhou: Henan Agricultural University, 2016. |
郜宇洋. 不同生长阶段西门塔尔杂交肉牛氮、磷及甲烷排放情况的差异. 郑州: 河南农业大学, 2016. | |
10 | Li B C, Dong L F, Wang B, et al. Effects of concentrate-to-forage ratio on methane emissions, growth performance and apparent digestibility of nutrients in 9-month-old dairy cows. Feed Industry Magazine, 2019, 40(11): 12-18. |
李斌昌, 董利锋, 王贝, 等. 日粮不同精粗比对9月龄后备奶牛甲烷排放与生长性能及营养物质消化率的影响. 饲料工业, 2019, 40(11): 12-18. | |
11 | Jiao H P, Yan T H, Wills D A, et al. Development of prediction models for quantification of total methane emission from enteric fermentation of young Holstein cattle at various stages. Agriculture, Ecosystems and Environment, 2014, 183: 160-166. |
12 | Feeding standard of dairy cattle (NY/T 34-2004). Beijing: Ministry of Agriculture of the People’s Republic of China, 2004. |
奶牛饲养标准(NY/T 34-2004). 北京: 中华人民共和国农业部, 2004. | |
13 | Lee C, Hristov A N. Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. Journal of Dairy Science, 2013, 96(8): 5295-5299. |
14 | Dong L F, Zhang W B, Zhang N F, et al. Feeding different dietary protein to energy ratios to Holstein heifers: Effects on growth performance, blood metabolites and rumen fermentation parameters. Journal of Animal Physiology and Animal Nutrition, 2016, 101(1): 30-37. |
15 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
16 | Zhang R, Zheng C, Yan X G, et al. Effects of oregano oil on ruminal fermentation characteristics and methane production of sheep by gas production technique in vitro. Chinese Journal of Animal Nutrition, 2018, 30(8): 3168-3175. |
张然, 郑琛, 闫晓刚, 等. 体外产气法研究牛至油对绵羊瘤胃发酵特征和甲烷产量的影响. 动物营养学报, 2018, 30(8): 3168-3175. | |
17 | Morrison S J, McBride J, Gordon A W, et al. Methane emissions from grazing Holstein-Friesian heifers at different ages estimated using the sulfur hexafluoride tracer technology. Engineering, 2017, 3(5): 753-759. |
18 | Zhang L Y. Feed analysis and feed quality testing (Version 2). Beijing: China Agricultural University Press, 2003. |
张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2003. | |
19 | Yang H J, Feng Y L. Effect of cellulose to starch ratio in substrate on in vitro microbial protein yield with equal-nitrogen purified substrate. Chinese Journal of Animal Science, 2003, 39(4): 7-9. |
杨红建, 冯仰廉. 不同纤维素与淀粉比率等氮纯化底物瘤胃发酵微生物蛋白质合成量. 中国畜牧杂志, 2003, 39(4): 7-9. | |
20 | Song R Y, Wang H R, Wang W, et al. Influence of diet with different nitrogen and energy synchronous release on the ruminal fermentation in vitro and microbial protein synthesis in rumen of dairy cows. China Dairy Cattle, 2010(5): 7-11. |
宋荣渊, 王洪荣, 王伟, 等. 不同能氮同步化释放日粮对奶牛瘤胃体外发酵和微生物蛋白合成的影响. 中国奶牛, 2010(5): 7-11. | |
21 | Kljak K, Pino F, Heinrichs A J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. Journal of Dairy Science, 2017, 100: 213-223. |
22 | Rodriguez-Hernandez K, Anderson J L. Evaluation of carinata meal as a feedstuff for growing dairy heifers: Effects on growth performance, rumen fermentation, and total-tract digestibility of nutrients. Journal of Dairy Science, 2018, 101: 1206-1215. |
23 | Zhao N, Yang X H, Chen F, et al. Effect of silage feeding rape on the rumen fermentation parameters and microbial diversity of goats. Acta Prataculturae Sinica, 2019, 28(9): 146-154. |
赵娜, 杨雪海, 陈芳, 等. 青贮饲用油菜对育肥期山羊瘤胃发酵参数及微生物多样性的影响. 草业学报, 2019, 28(9): 146-154. | |
24 | Murphy M, Åkerlind M, Holtenius K. Rumen fermentation in lactating cows selected for milk fat content fed two forage to concentrate ratios with hay or silage. Journal of Dairy Science, 2000, 83: 756-764. |
25 | Moody M L, Zanton G I, Daubert J M, et al. Heinrichs. Nutrient utilization of differing forage-to-concentrate ratios by growing Holstein heifers. Journal of Dairy Science, 2007, 90(12): 5580-5586. |
26 | Lascano G J, Heinrichs A J. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science, 2009, 124(1/3): 48-57. |
27 | van Wyngaard J D V, Meeske R, Erasmus L J. Effect of concentrate level on enteric methane emissions, production performance, and rumen fermentation of Jersey cows grazing kikuyu-dominant pasture during summer. Journal of Dairy Science, 2018, 101(11): 9954-9966. |
28 | van Gastelen S, Dijkstra J, Bannink A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? Journal of Dairy Science, 2019, 102: 6109-6130. |
29 | Wang Z L, Sun X L, Liu T T, et al. Effects of dietary neutral detergent fiber to starch ratio on methane production using in vitro gas production technique. Chinese Journal of Animal Nutrition, 2019, 31(7): 3251-3259. |
王增林, 孙雪丽, 刘桃桃, 等. 利用体外产气法研究饲粮中性洗涤纤维/淀粉对瘤胃甲烷产量的影响. 动物营养学报, 2019, 31(7): 3251-3259. | |
30 | Moss A R, Givens D I, Garnsworthy P C. The effect of alkali treatment of cereal straws on digestibility and methane production by sheep. Animal Feed Science and Technology, 1994, 49: 245-259. |
31 | Arndt C, Powell J M, Aguerre M J, et al. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. Journal of Dairy Science, 2015, 98: 418-430. |
32 | Hook S E, Steele M A, Northwood K S, et al. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecology, 2011, 62: 94-105. |
33 | IPCC. Climate change: Impacts, adaptation, and vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2014. |
34 | Ellis J L, Kebreab E, Odongo N E, et al. Prediction of methane production from dairy and beef cattle. Journal of Dairy Science, 2007, 90: 3456-3467. |
35 | Hristov A N, Kebreab E, Niu M, et al. Uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101(7): 6655-6674. |
36 | Ramin M, Huhtanen P. Development of non-linear models for predicting enteric methane production. Acta Agriculturae Scand Section A-Animal Science, 2012, 62(4): 254-258. |
[1] | 占今舜, 杨群, 胡耀, 武艳平, 霍俊宏. 日粮精粗比对湖羊瘤胃发酵和菌群结构的影响[J]. 草业学报, 2020, 29(7): 122-130. |
[2] | 刘永嘉, 王聪, 刘强, 郭刚, 霍文婕, 张静, 裴彩霞, 张延利. 日粮补充异丁酸对犊牛生长性能、瘤胃发酵和纤维分解菌菌群的影响[J]. 草业学报, 2019, 28(7): 151-158. |
[3] | 陈雅坤,王建平,卜登攀,刘宁,刘威. 复合酶制剂对瘤胃发酵及泌乳早期奶牛生产性能的影响[J]. 草业学报, 2018, 27(4): 170-177. |
[4] | 张毕阳, 赵桂琴, 焦婷, 柴继宽, 苟智强, 许兴泽, 闫车太. 饲粮中添加燕麦干草对绵羊体外发酵的影响[J]. 草业学报, 2018, 27(2): 182-191. |
[5] | 段倩雯, 成慧, 侯扶江. 景泰绿洲三种小谷物生长时间对牧草产量和营养品质的预测[J]. 草业学报, 2017, 26(6): 185-194. |
[6] | 邓凯平, 王锋, 马铁伟, 王震, 于晓青, 丁立人, 陶晓强, 樊懿萱. 日粮中添加不同水平紫苏籽对湖羊生长性能、瘤胃发酵及养分表观消化率的影响[J]. 草业学报, 2017, 26(5): 205-212. |
[7] | 陈志远, 马婷婷, 方伟, 左晓昕, 林淼, 赵国琦. 日粮硝酸盐水平对湖羊瘤胃硝态氮动态消失率、发酵参数及血液高铁血红蛋白含量的影响[J]. 草业学报, 2016, 25(2): 95-104. |
[8] | 胡江, 王毅, 赵芳芳, 刘秀, 权金鹏, 牛晓亮, 韩向敏. 秸秆制粒对肉牛反刍、消化、瘤胃发酵及体增重的影响[J]. 草业学报, 2016, 25(10): 163-170. |
[9] | 杨宏波,刘红,占今舜,林淼,赵国琦. 不同精粗比颗粒饲料对断奶公犊牛瘤胃发酵参数和微生物的影响[J]. 草业学报, 2015, 24(12): 131-138. |
[10] | 赵栋,郑琛,李发弟,李冲,李廷福. 葡萄渣单宁对绵羊养分消化代谢及瘤胃发酵的影响[J]. 草业学报, 2014, 23(4): 285-292. |
[11] | 王东升,黄江丽,张志红,田晓娟,黄黄,印遇龙,丁建南. 凤仙花植株乙醇浸提液和固体粉剂对瘤胃体外发酵代谢参数的影响[J]. 草业学报, 2013, 22(2): 87-93. |
[12] | 塔娜,桂荣,魏日华,赵山志. 沙地恢复草场放牧绵羊体增重及瘤胃发酵参数动态变化[J]. 草业学报, 2010, 19(5): 45-50. |
[13] | 王聪,刘强,董宽虎,赵祥,刘生强,贺婷婷,刘壮宇. 不同盐碱化草地混播牧草对绵羊瘤胃发酵和日粮养分利用率的影响[J]. 草业学报, 2010, 19(5): 38-44. |
[14] | 王聪,刘强,董群,杨效民,贺东昌,董宽虎. 日粮补充苹果酸对牛瘤胃发酵和养分消化代谢的影响[J]. 草业学报, 2009, 18(3): 224-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||