草业学报 ›› 2021, Vol. 30 ›› Issue (2): 32-45.DOI: 10.11686/cyxb2020226
王晓娇1,3(), 蔡立群1,2,4(), 齐鹏1,2,4(), 王雅芝1, 陈晓龙1, 武均1,2,4, 张仁陟1,2,4()
收稿日期:
2020-05-21
修回日期:
2020-07-29
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
蔡立群,齐鹏,张仁陟
作者简介:
zhangrz@gsau.edu.cn基金资助:
Xiao-jiao WANG1,3(), Li-qun CAI1,2,4(), Peng QI1,2,4(), Ya-zhi Wang1, Xiao-long CHEN1, Jun Wu1,2,4, Ren-zhi ZHANG1,2,4()
Received:
2020-05-21
Revised:
2020-07-29
Online:
2021-02-20
Published:
2021-01-19
Contact:
Li-qun CAI,Peng QI,Ren-zhi ZHANG
摘要:
阐明长期有机物料施肥下土壤CO2排放特征及其影响机制以及碳库管理指数对黄土高原旱作农业区固碳减排及施肥模式选择的影响尤为重要。基于2012年设置在陇中黄土高原旱作区的长期定位试验,通过不施肥(CK)、氮肥(NF)、有机肥(OM)、秸秆(ST)、有机肥结合无机肥(OMNF)5个处理,测定并计算了2018年不同施肥措施下全年土壤CO2排放、作物碳排放效率和碳库管理指数的变化,并运用结构方程模型分析了0~30 cm土壤温度、水分、微生物量碳氮、易氧化有机碳、蔗糖酶、脲酶与土壤CO2排放速率的关系。结果表明:1)与不施肥相比,秸秆、有机结合无机肥和有机肥处理使生育期土壤CO2排放平均速率提高了42.72%、30.82%和29.79%,秸秆、有机肥处理分别使生育期土壤CO2排放量显著提高36.35%、32.45%(P<0.05),有机结合无机肥处理使碳排放效率显著降低41.10%(P<0.05);2)有机物料处理均能显著提高0~5 cm土层易氧化有机碳、微生物量碳氮、蔗糖酶活性和碳库管理指数,相比不施肥和氮肥处理,有机结合无机肥处理分别使0~30 cm土壤碳库管理指数提高127.41%,99.33%(P<0.05);3)结构方程模型表明,环境因子对土壤CO2排放速率的总解释度为53%,对土壤CO2排放速率总效应较大的影响因素包括土壤温度(2.36)、微生物量碳(1.59)和土壤水分(1.18),且均间接地影响着土壤CO2排放速率,土壤温度促进了微生物量碳和蔗糖酶活性的提高,微生物量碳促进了微生物量氮和易氧化有机碳的增加。综合来看,有机结合无机肥处理可以提升土壤碳库管理指数,保持微生物活性,增加作物产量,降低土壤碳排放效率,是陇中黄土高原旱作农业区比较适宜的农田培肥措施。
王晓娇, 蔡立群, 齐鹏, 王雅芝, 陈晓龙, 武均, 张仁陟. 培肥措施对旱地农田土壤CO2排放和碳库管理指数的影响[J]. 草业学报, 2021, 30(2): 32-45.
Xiao-jiao WANG, Li-qun CAI, Peng QI, Ya-zhi Wang, Xiao-long CHEN, Jun Wu, Ren-zhi ZHANG. Effects of alternative fertilizer options on soil CO2 emission and carbon pool management index in a dryland soil[J]. Acta Prataculturae Sinica, 2021, 30(2): 32-45.
土层 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
0~5 | 1.29 | 7.63 | 0.85 | 1.89 | 13.30 | 349.60 | 8.40 |
5~10 | 1.23 | 7.46 | 0.81 | 1.92 | 11.90 | 330.20 | 8.30 |
10~30 | 1.32 | 6.93 | 0.78 | 1.82 | 4.90 | 244.00 | 8.40 |
表1 试验地土壤主要理化性质
Table 1 Soil physical and chemical properties of experimental field
土层 Soil layer (cm) | 容重 Bulk density (g·cm-3) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|
0~5 | 1.29 | 7.63 | 0.85 | 1.89 | 13.30 | 349.60 | 8.40 |
5~10 | 1.23 | 7.46 | 0.81 | 1.92 | 11.90 | 330.20 | 8.30 |
10~30 | 1.32 | 6.93 | 0.78 | 1.82 | 4.90 | 244.00 | 8.40 |
图2 不同时期土壤CO2排放通量a:土壤CO2排放通量趋势 Trend of soil CO2 emission flux;b:土壤CO2排放通量趋势分布Distribution of soil CO2 emission flux.
Fig. 2 Soil CO2 emission flux in different periods
图3 不同培肥处理下土壤理化性质和微生物指标不同小写字母表示各处理间差异显著(P<0.05)。Different lowercase letters indicate significant difference among different treatment (P<0.05).
Fig.3 Soil physical chemistry properties and microbial indexes under different fertilization treatments
处理 Treatments | 籽粒产量 Grain yield (kg·hm-2) | 土壤CO2-C排放量Carbon emission (CE, kg C·hm-2) | 全年CEE Annual carbon emission efficiency | ||
---|---|---|---|---|---|
生育期Growing period | 休闲期Non-growing period | 全年Year | |||
CK | 4382.32±428.18c | 4505.41±471.55c | 1911.74±86.22a | 6417.14±507.28c | 1.46±0.86a |
NF | 11017.54±885.65a | 5966.94±776.66b | 2034.76±120.79a | 8001.70±548.89b | 0.73±0.56b |
OM | 6281.99±485.22b | 6292.70±693.68a | 2207.19±209.52a | 8499.89±919.94a | 1.35±0.14a |
ST | 5931.64±827.06bc | 6332.46±399.71a | 2417.15±899.43a | 8749.62±834.11a | 1.49±0.18a |
OMNF | 9695.02±973.22a | 5941.44±766.57b | 2236.04±67.78a | 8177.48±820.31ab | 0.86±0.18b |
表2 不同培肥处理对农田作物产量和碳排放效率的影响
Table 2 Crop yield and carbon emission efficiency under different fertilization treatments
处理 Treatments | 籽粒产量 Grain yield (kg·hm-2) | 土壤CO2-C排放量Carbon emission (CE, kg C·hm-2) | 全年CEE Annual carbon emission efficiency | ||
---|---|---|---|---|---|
生育期Growing period | 休闲期Non-growing period | 全年Year | |||
CK | 4382.32±428.18c | 4505.41±471.55c | 1911.74±86.22a | 6417.14±507.28c | 1.46±0.86a |
NF | 11017.54±885.65a | 5966.94±776.66b | 2034.76±120.79a | 8001.70±548.89b | 0.73±0.56b |
OM | 6281.99±485.22b | 6292.70±693.68a | 2207.19±209.52a | 8499.89±919.94a | 1.35±0.14a |
ST | 5931.64±827.06bc | 6332.46±399.71a | 2417.15±899.43a | 8749.62±834.11a | 1.49±0.18a |
OMNF | 9695.02±973.22a | 5941.44±766.57b | 2236.04±67.78a | 8177.48±820.31ab | 0.86±0.18b |
土层 Soil layer (cm) | 处理 Treatment | 碳库活度 A | 碳库活度指数 AI | 碳库指数 CPI | 碳库管理指数 CPMI (%) | 土壤碳素效率 SCE (%) |
---|---|---|---|---|---|---|
0~5 | ST | 0.39a | 1.78a | 1.25a | 223.07a | 27.90a |
OM | 0.38a | 1.75a | 1.21a | 212.08a | 27.53b | |
OMNF | 0.40a | 1.84a | 1.16b | 212.61a | 28.57b | |
NF | 0.32b | 1.49b | 1.15b | 171.77b | 24.46c | |
CK | 0.22c | 1.00c | 1.00c | 100.00c | 16.40d | |
5~10 | ST | 0.38a | 1.83ab | 1.19a | 217.33a | 27.35a |
OM | 0.38a | 1.84a | 1.16a | 217.18a | 27.55a | |
OMNF | 0.39a | 1.91a | 1.14a | 217.53a | 28.24a | |
NF | 0.29b | 1.39b | 1.13a | 157.49b | 22.28b | |
CK | 0.21c | 1.00c | 1.00b | 100.00c | 17.10c | |
10~30 | ST | 0.38a | 1.91a | 1.24a | 236.36b | 27.05b |
OM | 0.38a | 1.95a | 1.21ab | 235.76b | 27.68b | |
OMNF | 0.45a | 2.28a | 1.19bc | 271.08a | 30.91a | |
NF | 0.20b | 1.01b | 1.18cd | 117.69c | 16.36c | |
CK | 0.20b | 1.00b | 1.00d | 100.00c | 16.40c | |
0~30 | ST | 0.37a | 1.87a | 1.17a | 218.14b | 27.24b |
OM | 0.38a | 1.90a | 1.19a | 225.30a | 27.64a | |
OMNF | 0.43a | 2.13a | 1.07a | 227.41a | 29.98a | |
NF | 0.23b | 1.15b | 1.11a | 128.08c | 18.85c | |
CK | 0.20b | 1.00b | 1.00b | 100.00d | 16.77d |
表3 不同施肥措施对土壤碳库管理指数的影响
Table 3 Soil carbon pool management index under different fertilization treatments
土层 Soil layer (cm) | 处理 Treatment | 碳库活度 A | 碳库活度指数 AI | 碳库指数 CPI | 碳库管理指数 CPMI (%) | 土壤碳素效率 SCE (%) |
---|---|---|---|---|---|---|
0~5 | ST | 0.39a | 1.78a | 1.25a | 223.07a | 27.90a |
OM | 0.38a | 1.75a | 1.21a | 212.08a | 27.53b | |
OMNF | 0.40a | 1.84a | 1.16b | 212.61a | 28.57b | |
NF | 0.32b | 1.49b | 1.15b | 171.77b | 24.46c | |
CK | 0.22c | 1.00c | 1.00c | 100.00c | 16.40d | |
5~10 | ST | 0.38a | 1.83ab | 1.19a | 217.33a | 27.35a |
OM | 0.38a | 1.84a | 1.16a | 217.18a | 27.55a | |
OMNF | 0.39a | 1.91a | 1.14a | 217.53a | 28.24a | |
NF | 0.29b | 1.39b | 1.13a | 157.49b | 22.28b | |
CK | 0.21c | 1.00c | 1.00b | 100.00c | 17.10c | |
10~30 | ST | 0.38a | 1.91a | 1.24a | 236.36b | 27.05b |
OM | 0.38a | 1.95a | 1.21ab | 235.76b | 27.68b | |
OMNF | 0.45a | 2.28a | 1.19bc | 271.08a | 30.91a | |
NF | 0.20b | 1.01b | 1.18cd | 117.69c | 16.36c | |
CK | 0.20b | 1.00b | 1.00d | 100.00c | 16.40c | |
0~30 | ST | 0.37a | 1.87a | 1.17a | 218.14b | 27.24b |
OM | 0.38a | 1.90a | 1.19a | 225.30a | 27.64a | |
OMNF | 0.43a | 2.13a | 1.07a | 227.41a | 29.98a | |
NF | 0.23b | 1.15b | 1.11a | 128.08c | 18.85c | |
CK | 0.20b | 1.00b | 1.00b | 100.00d | 16.77d |
1 | Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(7): 1917-1925. |
2 | Bradford M A, Wieder, William R, et al. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 2016, 6(8): 751-758. |
3 | Liu S W, Cheng J, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget. Ecology Letters, 2018, 21(1): 1108-1118. |
4 | Matthew C, Reto K. Long-term climate change: Projections, commitments and irreversibility. // In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. USA: Cambridge University Press, 2014: 1031-1102. |
5 | O'neill, Brian C, Oppenheimer M, et al. IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7(5): 28-37. |
6 | Wen Y C, Li Y Q, Yuan L, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 91-99. |
温延臣, 李燕青, 袁亮, 等. 长期不同施肥制度土壤肥力特征综合评价方法. 农业工程学报, 2015, 31(7): 91-99. | |
7 | Eberwein J, Oikawa P, Allsman L, et al. Carbon availability regulates soil respiration response to nitrogen and temperature. Soil Biology and Biochemistry, 2015, 88(9): 158-164. |
8 | Liu L T, Hu C S, Yang P P, et al. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow. Agricultural and Forest Meteorology, 2015, 207(15): 38-47. |
9 | Devaraju N, Bala G, Caldeira K, et al. A model based investigation of the relative importance of CO2 fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period. Climate Dynamics, 2016, 47(12): 173-190. |
10 | Zhou L Y, Zhou X H, Zhang B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Global Change Biology, 2014, 20(7): 2332-2343. |
11 | Wang X J, Zhang R Z, Qi P, et al. Meta-analysis on farmland soil CO2 emission in Northern China affected by organic fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 99-107. |
王晓娇, 张仁陟, 齐鹏, 等. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响. 农业工程学报, 2019, 35(10): 99-107. | |
12 | Ye X X, Wang B Q, Liu S J, et al. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 112-116. |
叶新新, 王冰清, 刘少君, 等. 耕作方式和秸秆还田对砂姜黑土碳库及玉米小麦产量的影响. 农业工程学报, 2019, 35(14): 112-116. | |
13 | He M, Wang L G, Wang Y C, et al. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 151-161. |
贺美, 王立刚, 王迎春, 等. 长期定位施肥下黑土呼吸的变化特征及其影响因素. 农业工程学报, 2018, 34(4): 151-161. | |
14 | Zhang G R, Li J M, Xu M G, et al. Effects of chemical fertilizer and organic manure on rice yield and soil fertility. Scientia Agricultura Sinica, 2009, 42(2): 543-551. |
张国荣, 李菊梅, 徐明岗, 等. 长期不同施肥对水稻产量及土壤肥力的影响. 中国农业科学, 2009, 42(2): 543-551. | |
15 | Meng Q F, Hou P, Wu L, et al. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(3): 91-97. |
16 | Zhang Y Y. Study on the relationship between soil labile organic carbon fractions and soil enzyme activity with different tillage measures in rainfed farmland. Lanzhou: Gansu Agricultural University, 2016. |
张英英. 不同耕作措施下旱作农田土壤活性有机碳组分与酶活性关系研究. 兰州: 甘肃农业大学, 2016. | |
17 | Zha Y, Wu X P, Zhang H M, et al. Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil. Scientia Agricultura Sinica, 2015, 48(23): 4649-4659. |
查燕, 武雪萍, 张会民, 等. 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 2015, 48(23): 4649-4659. | |
18 | Gao X N, Han X R, Zhan X M, et al. Effect of long-term fertilization on total nitrogen storage in a brown soil. Journal of Plant Nutrition and Fertilizers, 2009, 15(3): 567-572. |
高晓宁, 韩晓日, 战秀梅, 等. 长期不同施肥处理对棕壤氮储量的影响. 植物营养与肥料学报, 2009, 15(3): 567-572. | |
19 | Xu Y M, Liu H, Wang X H. Evolution of soil organic carbon and crop yield under long-term fertilization in grey desert soils. Chinese Journal of Eco-Agriculture, 2016, 24(2): 154-162. |
许咏梅, 刘骅, 王西和. 长期施肥下新疆灰漠土有机碳及作物产量演变. 中国生态农业学报, 2016, 24(2): 154-162. | |
20 | Wang Y Y, Li X X, Dong W X, et al. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain. Chinese Journal of Eco-Agriculture, 2018, 26(2): 167-174. |
王玉英, 李晓欣, 董文旭, 等. 华北平原农田温室气体排放与减排综述. 中国生态农业学报, 2018, 26(2): 167-174. | |
21 | Bai X Y, Hong M, Yang Y M, et al. Effects of fertilization on soil CO2 and N2O emissions in Hetao irrigated area. Journal of Irrigation and Drainage, 2017, 36(7): 66-70. |
白雪原, 红梅, 杨彦明, 等. 施肥对河套灌区土壤CO2和N2O排放的影响. 灌溉排水学报, 2017, 36(7): 66-70. | |
22 | Zhao Y H, Zhang Y J, Li G C, et al. Soil organic carbon stock and active carbon fractions under four kinds of long-term fertilization. Chinese Journal of Ecology, 2016, 35(7): 1826-1833. |
赵玉皓, 张艳杰, 李贵春, 等. 长期不同施肥下褐土有机碳储量及活性碳组分. 生态学杂志, 2016, 35(7): 1826-1833. | |
23 | Guo Y. Emission characteristics of CO2 and CH4 from upland soil under long-term fertilization. Yangling: Northwest A & F University, 2017. |
郭芸. 长期施肥下旱地塿土CO2和CH4排放特征的研究. 杨凌: 西北农林科技大学, 2017. | |
24 | Chen Z. Greenhouse gas emissions from soil of seasonally frozenregion of ecosystems. Beijing: Chinese Academy of Agricultural Science, 2016. |
陈哲. 季节性冻土区生态系统土壤温室气体排放研究. 北京: 中国农业科学院, 2016. | |
25 | Zhang W L. The soil respiration and its factors under different tillages. Beijing: University of Chinese Academy of Science, 2019. |
张文丽. 不同耕作下土壤呼吸及其影响因子研究. 北京: 中国科学院大学, 2019. | |
26 | Chen Z M, Xu Y H, Fan J L, et al. Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biology and Biochemistry, 2017, 110(6): 103-115. |
27 | Chen H X, Liu J J, Zhang A F, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in loess plateau, China: A field study of consecutive wheat-maize rotation cycles. Science of the Total Environment, 2017, 579(2): 814-824. |
28 | Song M, Qi P, Cai L Q, et al. Effect of different biochar application levels on greenhouse gas emissions in the Loess Plateau semi-arid environment in China. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1185-1195. |
宋敏, 齐鹏, 蔡立群, 等. 不同生物质炭输入水平下旱作农田温室气体排放研究. 中国生态农业学报, 2016, 24(9): 1185-1195. | |
29 | Feng J F, Chen C Q, Zhang Y, et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agriculture, Ecosystems & Environment, 2013, 164(1): 220-228. |
30 | Xie J H, Zhang R Z, Li L L, et al. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2015, 23(11): 1384-1393. |
谢军红, 张仁陟, 李玲玲, 等. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响. 中国生态农业学报, 2015, 23(11): 1384-1393. | |
31 | Yin W, Shi Q Q, Guo Y, et al. Short-term response of farmland carbon emission to straw return, two-year plastic film mulching and intercropping. Chinese Journal of Eco-Agriculture, 2016, 24(6): 716-724. |
殷文, 史倩倩, 郭瑶, 等. 秸秆还田、一膜两年用及间作对农田碳排放的短期效应. 中国生态农业学报, 2016, 24(6): 716-724. | |
32 | Yan C P, Zhang Y M, Hu C S, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704-715. |
闫翠萍, 张玉铭, 胡春胜, 等. 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势. 中国生态农业学报,2016, 24(6): 704-715. | |
33 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000: 30-50. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30-50. | |
34 | Lin X G. Principles and methods of soil microbiology research. Beijing: Higher Education Press, 2010: 62-87. |
林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010: 62-87. | |
35 | Guan S Y. Soil enzymes and research methods. Beijing: Agriculture Press, 1986: 43-56. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 43-56. | |
36 | Physical Department in Institute of Soil Science of Chinese Academy of Sciences. Research methods of soil physical properties. Beijing: Science Press, 1978: 12-24. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978: 12-24. | |
37 | Yao Y M. Effects of tillage and nitrogen application on carbon dioxide emissions from maize farmland in Long-zhong Loss Plateau. Lanzhou: Gansu Agricultural University, 2019. |
姚一铭. 耕法和施氮对黄土高原陇中地区玉米农田CO2排放的影响. 兰州: 甘肃农业大学, 2019. | |
38 | Grace J B. Structural equation modeling and natural systems. Cambridge: Cambridge University Press, 2006: 78-96. |
39 | Zhang Z Q, Zhang L X, Xu W, et al. Several important issues of soil respiration under climate warming. Acta Prataculturae Sinica, 2019, 28(9): 164-173. |
张智起, 张立旭, 徐炜, 等. 气候变暖背景下土壤呼吸研究的几个重要问题. 草业学报, 2019, 28(9): 164-173. | |
40 | Li Y Q, Tang J W, Che S G, et al. Effects of long-term application of organic manure and fertilizer nitrogen on N2O and CO2 emissions from summer maize in North China. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. |
李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015, 48(21): 4381-4389. | |
41 | Chen J L. Soil respiration analysis of film mulching dryland maize field in semiarid area of Loess Plateau. Lanzhou: Lanzhou University, 2013. |
陈计玲. 半干旱黄土高原旱作覆膜玉米农田土壤呼吸通量分析. 兰州: 兰州大学, 2013. | |
42 | Li J Q, Pei J M, Pendall E, et al. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biology and Biochemistry, 2020, 141(5): 1-6. |
43 | Zhu X P, Jia H T, Zhou J Q, et al. Effects of rainfall on short-term release of CO2 from wetland and farmland soils in arid and semi-arid areas. Journal of Agricultural Resources and Environment, 2017, 34(1): 54-58. |
朱新萍, 贾宏涛, 周建勤, 等. 降雨对干旱半干旱区湿地和农田土壤CO2短期释放的影响. 农业资源与环境学报, 2017, 34(1): 54-58. | |
44 | Zang Y F. Soil microbiological characteristics and biological fertility evaluation under different long-term rotation fertilization. Yangling: Northwest A & F University, 2016. |
臧逸飞. 长期不同轮作施肥土壤微生物学特性研究及生物肥力评价. 杨凌: 西北农林科技大学, 2016. | |
45 | Liu X Y. Effects of soil organic amendment on productivity and greenhouse gas mitigation of croplands: Field studied and synthetic analysis. Nanjing: Nanjing Agricultural University, 2013. |
刘晓雨. 施用有机物料对农田固碳减排及生产力的影响: 田间试验及整合研究. 南京: 南京农业大学, 2013. | |
46 | Lin W. Influence of plastic mulch and straw mulch on soil reservoir and crop yield on the Loess Plateau. Beijing: University of Chinese Academy of Sciences, 2017. |
林文. 地膜和秸秆覆盖对黄土高原旱作农田土壤水库与作物产量的影响. 北京: 中国科学院大学, 2017. | |
47 | Ma D D. Impacts of plastic film mulching on soil water, soil nutrients and crop yields in Northwestern China: A meta-analysis. Yangling: Northwest A & F University, 2018. |
马德帝. 西北地区地膜覆盖对土壤水分、养分及作物产量的Meta分析. 杨凌: 西北农林科技大学, 2018. | |
48 | Ren J H. Long-term conservation tillage effects on carbon emissions of Loessal soil and its underline mechanisms in semi-arid areas. Lanzhou: Gansu Agricultural University, 2017. |
任金虎. 长期保护性耕作对半干旱区黄绵土碳排放的影响及机制. 兰州: 甘肃农业大学, 2017. | |
49 | Tao L, Chu G X, Liu T, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecologica Sinica, 2014, 34(21): 6137-6146. |
陶磊, 褚贵新, 刘涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响. 生态学报, 2014, 34(21): 6137-6146. | |
50 | Zhang G L, Zhao J N, Song X L, et al. Effects of fertilization on soil organic carbon and carbon pool management index. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 359-365. |
张贵龙, 赵建宁, 宋晓龙, 等. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012, 18(2): 359-365. | |
51 | Gao H J. Effects of long-term fertilization on maize yield, soil fertility and greenhouse gas emissions in Northeast China. Nanjing: Nanjing Agricultural University, 2015. |
高洪军. 长期不同施肥对东北玉米产量和土壤肥力及温室气体排放的影响研究. 南京: 南京农业大学, 2015. | |
52 | Ren F L, Zhang X B, Sun N, et al. Integrated analysis of effects of organic manure application on soil microbial biomass in China. Scientia Agricultura Sinica, 2018, 51(1): 119-128. |
任凤玲, 张旭博, 孙楠, 等. 施用有机肥对中国农田土壤微生物量影响的整合分析. 中国农业科学, 2018, 51(1): 119-128. | |
53 | Li X G, Peng S G, Jin Z L, et al. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil. Acta Pedologica Sinica, 2020. doi:10.11766/trxb201907220320. |
李孝刚, 彭曙光, 靳志丽, 等. 有机物料对植烟土壤氮素矿化及微生物性质的影响. 土壤学报, 2020. doi:10.11766/trxb201907220320. | |
54 | Zhang R, Zhang G L, Ji Y Y, et al. Effects of different fertilizer application on soil active organic carbon. Environmental Science, 2013, 34(1): 277-282. |
张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响. 环境科学, 2013, 34(1): 277-282. | |
55 | Wang L H. Effects of organic fertilizers from different sources and their combined application on soil properties. Changchun: Jilin Agricultural University, 2007. |
王利辉. 不同来源有机肥及其配合施用对土壤性质的影响. 长春: 吉林农业大学, 2007. | |
56 | Xu Y C, Shen Q R, Ran W. Effects of zero tillage and application of manure on soil microbial biomass C,N,and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 83-90. |
徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 83-90. | |
57 | Dai Z M, Su W Q, Chen H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 2018, 27(4): 1-7. |
58 | Dong Y Y, Wang F, Han J Q, et al. Effect of plastic film and straw mulching on soil moisture and soybean yield in dryland farmland. Research of Soil and Water Conservation, 2020, 27(3): 365-371. |
董云云, 王飞, 韩剑桥, 等. 地膜和秸秆覆盖对旱地农田土壤水分和大豆产量的影响. 水土保持研究, 2020, 27(3): 365-371. | |
59 | Lehmann A, Zheng W S, Rillig M C. Soil biota contributions to soil aggregation. Nature Ecology & Evolution, 2017, 21(1): 1828-1835. |
60 | Yan P Y. Characteristics and influencing factors of greenhouse gas emissions from different cultivation models of maize farmland in dryland of Loess Plateau. Yangling: Northwest A & F University, 2013. |
阎佩云. 黄土旱塬旱作玉米农田不同栽培模式温室气体排放特征及影响因素. 杨凌: 西北农林科技大学, 2013. | |
61 | Zhang J L. Soil respiration and soil carbon balance in rainfed summer maize field under tillage and nitrogen application. Yangling: Northwest A & F University, 2014. |
张俊丽. 耕作和施氮措施下旱作夏玉米田土壤呼吸与土壤碳平衡研究. 杨凌: 西北农林科技大学, 2014. | |
62 | Chen J, Luo Y Q, Garcia P, et al. Differential responses of carbon-degrading enzymes activities to warming: Implications for soil respiration. Global Change Biology, 2018, 24(10): 4816-4826. |
63 | Chen J, Lars E, Groenigen K T V, et al. Soil carbon loss with warming: New evidence from carbon-degrading enzymes running title: Enzyme activity and soil C with warming. Global Change Biology, 2020, 26(4): 1944-1952. |
64 | Liang L, Ma C, Zhang R, et al. Improvement of soil nutrient availability and enzyme activities in rainfed wheat field by combined application of organic and inorganic fertilizers. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 544-554. |
梁路, 马臣, 张然, 等. 有机无机肥配施提高旱地麦田土壤养分有效性及酶活性. 植物营养与肥料学报, 2019, 25(4): 544-554. | |
65 | Stephen Y, Shirley L, Cai L Q, et al. Short-term effects of biochar amendment on greenhouse gas emissions from rainfed agricultural soils of the semi-arid loess plateau region. Agronomy, 2018, 8(74): 2-12. |
[1] | 齐鹏, 王晓娇, 姚一铭, 陈晓龙, 武均, 蔡立群. 不同耕作方法和施氮量对旱作农田土壤CO2排放及碳平衡的影响[J]. 草业学报, 2021, 30(1): 96-106. |
[2] | 刘红梅, 张海芳, 赵建宁, 王慧, 秦洁, 杨殿林, 张乃芹. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报, 2020, 29(8): 18-26. |
[3] | 王晓娇, 齐鹏, 蔡立群, 陈晓龙, 谢军红, 甘慧炯, 张仁陟. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响[J]. 草业学报, 2020, 29(10): 58-69. |
[4] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[5] | 张雅柔, 安慧, 刘秉儒, 文志林, 吴秀芝, 李巧玲, 杜忠毓. 短期氮磷添加对荒漠草原土壤活性有机碳的影响[J]. 草业学报, 2019, 28(10): 12-24. |
[6] | 阎欣, 刘任涛, 安慧. 土壤易氧化有机碳与溶解性有机碳对荒漠草地沙漠化过程中土壤碳库变异的表征[J]. 草业学报, 2018, 27(11): 15-25. |
[7] | 张义凡, 陈林, 李学斌, 李月飞, 杨新国. 不同荒漠草原植被根际与非根际土壤养分及碳库管理指数特征[J]. 草业学报, 2017, 26(8): 24-34. |
[8] | 张洋, 刘月娇, 倪九派, 谢德体. 柑橘/大球盖菇间作对三峡库区紫色土活性有机碳库的影响[J]. 草业学报, 2015, 24(5): 53-65. |
[9] | 邓少虹,林明月,李伏生,苏以荣,刘坤平. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||