草业学报 ›› 2021, Vol. 30 ›› Issue (9): 27-37.DOI: 10.11686/cyxb2020347
收稿日期:
2020-07-20
修回日期:
2020-09-09
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
马维伟
作者简介:
Corresponding author. E-mail: maww@gsau.edu.cn基金资助:
Liang-cui SONG(), Wei-wei MA(), Guang LI, Shuai-nan LIU, Gang LU
Received:
2020-07-20
Revised:
2020-09-09
Online:
2021-08-30
Published:
2021-08-30
Contact:
Wei-wei MA
摘要:
氮矿化是土壤中氮素循环的重要过程,研究温度变化对不同退化梯度高寒湿地土壤净氮矿化速率的影响,对于理解全球气候变暖背景下土壤氮循环过程具有重要意义。以甘肃省甘南尕海湿地为研究对象,采用室内培养和间歇淋洗的方法,研究不同温度(15、25、35 ℃)培养下,4种退化梯度湿地(未退化、轻度退化、中度退化及重度退化)的土壤在0~10 cm、10~20 cm、20~40 cm土层的氮矿化特征。结果表明:1)同一湿地退化梯度,土壤净氮矿化速率和硝化速率随温度的升高逐渐增大,氨化速率随温度的升高先增大后减小。一级动力学方程的拟合值显示,35 ℃培养条件下土壤的氮矿化势(N0)最大。在同一温度下,不同退化梯度的土壤氮矿化势值变化显著,因而反映了土壤氮矿化潜力。2)在不同的培养时间下,随着温度的升高,土壤氮矿化速率和硝化速率均呈现上升的趋势;在整个培养期,不同退化梯度湿地的土壤在同一土层中的净氮矿化速率均随着培养时长的延长而呈现下降的趋势,在培养初期(12~24 d),土壤氮矿化速率显著升高,在培养后期,氮矿化速率逐渐减缓。3)湿地不同退化梯度对土壤氮矿化影响差异显著,4种退化程度下土壤净氮矿化量在不同温度下排序为35 ℃>25 ℃>15 ℃。温度对土壤氮矿化过程具有一定影响,高温有利于土壤氮矿化过程的进行。
宋良翠, 马维伟, 李广, 刘帅楠, 陆刚. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27-37.
Liang-cui SONG, Wei-wei MA, Guang LI, Shuai-nan LIU, Gang LU. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland[J]. Acta Prataculturae Sinica, 2021, 30(9): 27-37.
退化程度 Degree of degradation | 植被盖度 Vegetation coverage | 优势种组成 Dominant species composition | 生物量 Biomass(g·m-2) | 基本情况 Basic situations |
---|---|---|---|---|
UD | 85%以上Over 85% | 甘肃嵩草K. tibetica、蕨麻P. anserina、散穗早熟禾P. subfastigiata | 355.90 | 湿地植物是主要物种,其凋落物和根系较多,季节性水较浅,地下水位在20~40 cm。Wetland plants are the main species with more litter and root systems, seasonal water is shallow, and the groundwater level is 20-40 cm. |
LD | 70%~85% | 甘肃嵩草K. tibetica、棘豆O. falcata | 293.02 | 湿地植物是主要的伴生物种。裸露的土壤表面积为5%至10%,无积水。地下水位为40~70 cm。Wetland plants are the main companion species. The surface area of bare soil is 5% to 10%, and there is no accumulation of water. The groundwater level is 40-70 cm. |
MD | 30%~70% | 问荆E. arvense、矮生嵩草Kobresia humilis | 185.73 | 湿地植物是常见的伴生物种或偶发物种,并且会出现一些有毒的杂草。 裸露的土壤表面积为10%至30%,无积水。地下水位低于70 cm。Wetland plants are common companion species or occasional species, and some poisonous weeds will appear. The surface area of bare soil is 10% to 30%, and there is no accumulation of water. The groundwater level is below 70 cm. |
HD | <10% | 植被稀疏,只有零星的植被。暴露的表面积超过90%。The vegetation is sparse, with only sporadic vegetation. More than 90% of exposed surface area. |
表1 样地基本情况[20]
Table 1 Basic situation of plot
退化程度 Degree of degradation | 植被盖度 Vegetation coverage | 优势种组成 Dominant species composition | 生物量 Biomass(g·m-2) | 基本情况 Basic situations |
---|---|---|---|---|
UD | 85%以上Over 85% | 甘肃嵩草K. tibetica、蕨麻P. anserina、散穗早熟禾P. subfastigiata | 355.90 | 湿地植物是主要物种,其凋落物和根系较多,季节性水较浅,地下水位在20~40 cm。Wetland plants are the main species with more litter and root systems, seasonal water is shallow, and the groundwater level is 20-40 cm. |
LD | 70%~85% | 甘肃嵩草K. tibetica、棘豆O. falcata | 293.02 | 湿地植物是主要的伴生物种。裸露的土壤表面积为5%至10%,无积水。地下水位为40~70 cm。Wetland plants are the main companion species. The surface area of bare soil is 5% to 10%, and there is no accumulation of water. The groundwater level is 40-70 cm. |
MD | 30%~70% | 问荆E. arvense、矮生嵩草Kobresia humilis | 185.73 | 湿地植物是常见的伴生物种或偶发物种,并且会出现一些有毒的杂草。 裸露的土壤表面积为10%至30%,无积水。地下水位低于70 cm。Wetland plants are common companion species or occasional species, and some poisonous weeds will appear. The surface area of bare soil is 10% to 30%, and there is no accumulation of water. The groundwater level is below 70 cm. |
HD | <10% | 植被稀疏,只有零星的植被。暴露的表面积超过90%。The vegetation is sparse, with only sporadic vegetation. More than 90% of exposed surface area. |
图4 湿地不同退化梯度下土壤净氮矿化量不同大写字母表示同一土层、不同植被退化梯度之间差异显著(P<0.05);不同小写字母表示同一植被退化梯度、不同土层之间差异显著(P<0.05)。The different capital letters indicate the significant differences among the same soil layer and different vegetation degradation gradients(P<0.05), different lowercase letters indicate the significant differences among the same vegetation degradation gradient and different soil layers (P<0.05).
Fig.4 Soil net nitrogen mineralization under different degradation gradients of wetlands
温度 Temperature (℃) | 退化梯度 Degradation gradient | N0 (mg·kg-1) | K (d-1) | 模拟系数 Simulation coefficient (R2) |
---|---|---|---|---|
15 | UD | 3.986Ab | 0.036 | 0.850 |
LD | 4.154Ab | 0.035 | 0.855 | |
MD | 3.661Ab | 0.037 | 0.843 | |
HD | 3.138Bb | 0.039 | 0.837 | |
25 | UD | 4.207Ab | 0.036 | 0.870 |
LD | 3.888ABb | 0.036 | 0.861 | |
MD | 3.664Bb | 0.037 | 0.845 | |
HD | 3.149Cb | 0.039 | 0.842 | |
35 | UD | 7.898Aa | 0.028 | 0.860 |
LD | 7.304Ba | 0.028 | 0.858 | |
MD | 5.331Ca | 0.032 | 0.857 | |
HD | 5.043Ca | 0.032 | 0.852 |
表2 不同温度下湿地不同退化梯度土壤氮矿化的一级动力学方程模拟值
Table 2 Simulated values of first-order kinetic equations for soil nitrogen mineralization in different degradation gradients of wetlands at different temperatures
温度 Temperature (℃) | 退化梯度 Degradation gradient | N0 (mg·kg-1) | K (d-1) | 模拟系数 Simulation coefficient (R2) |
---|---|---|---|---|
15 | UD | 3.986Ab | 0.036 | 0.850 |
LD | 4.154Ab | 0.035 | 0.855 | |
MD | 3.661Ab | 0.037 | 0.843 | |
HD | 3.138Bb | 0.039 | 0.837 | |
25 | UD | 4.207Ab | 0.036 | 0.870 |
LD | 3.888ABb | 0.036 | 0.861 | |
MD | 3.664Bb | 0.037 | 0.845 | |
HD | 3.149Cb | 0.039 | 0.842 | |
35 | UD | 7.898Aa | 0.028 | 0.860 |
LD | 7.304Ba | 0.028 | 0.858 | |
MD | 5.331Ca | 0.032 | 0.857 | |
HD | 5.043Ca | 0.032 | 0.852 |
1 | Li Z J, Yang W Q, Yue K, et al. Effects of temperature on soil nitrogen mineralization in three subalpine forests of western Sichuan, China. Acta Ecologica Sinica, 2017, 37(12): 4045-4052. |
李志杰, 杨万勤, 岳楷, 等. 温度对川西亚高山3种森林土壤氮矿化的影响. 生态学报, 2017, 37(12): 4045-4052. | |
2 | Xie C J, Guo X L, Yu L C, et al. Net nitrogen mineralization in soils of Napahai wetland in Northwest Yunnan. Acta Ecologica Sinica, 2013, 33(24): 7782-7787. |
解成杰, 郭雪莲, 余磊朝, 等.滇西北高原纳帕海湿地土壤氮矿化特征. 生态学报, 2013, 33(24): 7782-7787. | |
3 | Liu T, Nan Z, Hou F. Grazing intensity effects on soil nitrogen mineralization in semi-arid grassland on the Loess Plateau of Northern China. Nutrient Cycling in Agroecosystems, 2011, 91(1): 67-75. |
4 | Xu Y, Li L, Wang Q, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe. Plant & Soil, 2007, 300(1): 289-300. |
5 | Liu Y, He N P, Wen X F, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture, Ecosystems and Environment, 2016, 215: 40-46. |
6 | Li W, Liu L Y, Chen L H, et al. Nitrogen mineralization of soil in evergreen broadleaf forests on Mountain Wuyi. Fujian Journal of Agricultural Sciences, 2015, 30(6): 594-598. |
李巍, 刘兰英, 陈丽华, 等. 武夷山常绿阔叶林土壤氮素矿化过程的研究. 福建农业学报, 2015, 30(6): 594-598. | |
7 | Bao X, Bao X X, Liu X C. Effects of nitrogen deposition on soil nitrogen mineralization of Betula platyphylla forest in Daxing’an Mountains. Journal of Northeast Forestry University, 2015, 43(7): 78-83. |
包翔, 包秀霞, 刘星岑. 施氮量对大兴安岭白桦次生林土壤氮矿化的影响. 东北林业大学学报, 2015, 43(7): 78-83. | |
8 | Yu F F, Li F Y, Jia Q Y. Effects of temperature and moisture on soil nitrogen mineralization of typical wetland in Liaohe reservation zone. Ecological Sciences, 2019, 38(6): 98-105. |
于芳芳, 李法云, 贾庆宇. 温度和水分对辽河保护区典型湿地土壤氮矿化的影响. 生态科学, 2019, 38(6): 98-105. | |
9 | Ma W W, Wang Y S, Li G, et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chinese Journal of Applied Ecology, 2018, 29(12): 3900-3906. |
马维伟, 王跃思, 李广, 等. 尕海湿地植被退化过程中植被——土壤系统有机碳储量变化特征. 应用生态学报, 2018, 29(12): 3900-3906. | |
10 | Ma W W, Wang H, Li G, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai wetland. Acta Ecologica Sinica, 2017, 37(15): 5091-5101. |
马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态.生态学报, 2017, 37(15): 5091-5101. | |
11 | Juan Y H, Tian L L, Liu Y, et al. Response of nitrogen transformation characteristics to freezing thawing cycles in the farmland black soil. Soils and Fertilizers in China, 2019(6): 38-43. |
隽英华, 田路路, 刘艳, 等. 农田黑土氮素转化特征对冻融作用的响应. 中国土壤与肥料, 2019(6): 38-43. | |
12 | Li P, Lang M, Wei W. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils. Soil Bulletin, 2020, 51(3): 694-701. |
李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响. 土壤通报, 2020, 51(3): 694-701. | |
13 | Hu Z H, Chang S L, Zhang Y T, et al. Dynamic response of soil nitrogen to freeze-thaw processes in different communities in the forests of the Tianshan Mountains. Acta Ecologica Sinica, 2019, 39(2): 571-579. |
胡仲豪, 常顺利, 张毓涛, 等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应.生态学报, 2019, 39(2): 571-579. | |
14 | Du N N, Qiu L P, Zhang X C, et al. Effect of land use on mineralization of soil carbon and nitrogen in semi-arid grasslands. Agricultural Research in Arid Areas, 2017, 35(5): 73-78. |
杜宁宁, 邱莉萍, 张兴昌, 等. 半干旱区土地利用方式对土壤碳氮矿化的影响.干旱地区农业研究, 2017, 35(5): 73-78. | |
15 | Li Y, Xu X H, Sun W, et al. Effects of different forms and levels of N additions on soil potentia net N mineralization rate in meadow steppe, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. |
李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 2019, 43(2): 174-184. | |
16 | Zhu Z C, Huang Y, Xu F W, et al. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Inner Mongolia grassland. Chinese Journal of Plant Ecology, 2017, 41(9): 938-952. |
朱志成, 黄银, 许丰伟, 等. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响. 植物生态学报, 2017, 41(9): 938-952. | |
17 | Wang Q B, Li L H, Bai Y F, et al. Field experimental studies on the effects of climate change on nitrogen mineralization of meadow steppe soil. Chinese Journal of Plant Ecology, 2000(6): 687-692. |
王其兵, 李凌浩, 白永飞, 等. 气候变化对草甸草原土壤氮素矿化作用影响的实验研究.植物生态学报, 2000(6): 687-692. | |
18 | Ma W W, Sun W Y. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai Wetland. Journal of Natural Resources, 2020, 35(5): 1250-1260. |
马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征. 自然资源学报, 2020, 35(5): 1250-1260. | |
19 | Xu Y Z, Ma W W, Li G, et al. Dynamic characteristics of soil light and heavy fraction organic carbon during vegetation degradation in Gahai Wetland. Journal of Soil and Water Conservation, 2018, 32(3): 205-211. |
许延昭, 马维伟, 李广, 等. 尕海湿地植被退化过程中土壤轻重组有机碳动态变化特征. 水土保持学报, 2018, 32(3): 205-211. | |
20 | Ma W W, Li G, Song J, et al. Effect of vegetation degradation on soil organic carbon pool and carbon pool management index in the Gahai Wetland, China. Acta Agrestia Sinica, 2019, 27(3): 687-694. |
马维伟, 李广, 宋捷, 等. 植被退化对尕海湿地土壤有机碳库及碳库管理指数的影响. 草地学报, 2019, 27(3): 687-694. | |
21 | Ma Y S, Lang B N, Li Q Y, et al. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 2002(9): 1-5. |
马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 2002(9): 1-5. | |
22 | Zhao K. A comparative study of the intermittent leaching long-distance aeration culture method of disturbance soil and undisturbed soil reflecting the soil nitrogen supply capacity of the Loess Plateau. Xianyang: Northwest A&F University, 2009. |
赵坤. 扰动土与原状土间歇淋洗长期通气培养法反映黄土高原土壤供氮能力比较研究. 咸阳: 西北农林科技大学, 2009. | |
23 | Zhan X Y, Liu C H, Fan H Y, et al. Comparison between two N-ammoniacal measurements in water-Napierian reagent colorimetric method and indophenol-blue colorimetric method. Environmental Science and Management, 2010, 35(11): 131-134. |
詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较——纳氏试剂光度法、靛酚蓝比色法. 环境科学与管理, 2010, 35(11): 131-134. | |
24 | Cao X Y, Xie Q. How to use ultraviolet spectrophotometry to determine nitration in water? Silicon Valley, 2014, 7(5): 72-73. |
曹秀云, 谢茜. 如何利用紫外分光光度法测定水中硝酸根离子? 硅谷, 2014, 7(5): 72-73. | |
25 | Guo Y J. The effect of nitrogen addition on alpine meadow vegetation and soil nitrogen supply capacity in the Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2015. |
郭雅婧. 氮素添加对青藏高原高寒草甸植被和土壤氮素供应能力的影响. 兰州: 兰州大学, 2015. | |
26 | Liu R Q, Qian L B, Yan J C, et al. Effects of coexisting metal ions and pH on adsorption stability of lead on biochar. Soils, 2017, 49(3): 467-475. |
刘荣琴, 钱林波, 晏井春, 等. pH及共存金属离子对生物质炭吸附铅稳定性的影响. 土壤, 2017, 49(3): 467-475. | |
27 | Howarth V R W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 1991, 13(2): 87-115. |
28 | Ren Y J, Liu X L, Wang H L, et al. Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral. Acta Agrestia Sinica, 2020, 28(2): 328-337. |
任雨佳, 刘夏琳, 王惠玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 2020, 28(2): 328-337. | |
29 | Khalil M I, Hossain M B, Schmidhal T U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biology & Biochemistry, 2005, 37(8): 1507-1518. |
30 | Chen D D, Sun D S, Zhang S H, et al. Soil N mineralization of an alpine meadow in eastern Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2011, 19(3): 420-424. |
陈懂懂, 孙大帅, 张世虎, 等. 青藏高原东缘高寒草甸土壤氮矿化初探. 草地学报, 2011, 19(3): 420-424. | |
31 | Tong X J, Tao B, Cao M K. Responses of soil respiration and nitrogen mineralization in terrestrial ecosystems to climate warming. Progress in Geography, 2005(4): 84-96. |
同小娟, 陶波, 曹明奎. 陆地生态系统土壤呼吸、氮矿化对气候变暖的响应. 地理科学进展, 2005(4): 84-96. | |
32 | Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology. New York: Springer, 2011. |
33 | Ju X T, Li S X. Temperature and water effects of soil nitrogen mineralization. Journal of Plant Nutrition and Fertilizers, 1998(1): 37-42. |
巨晓棠, 李生秀. 土壤氮素矿化的温度水分效应. 植物营养与肥料学报, 1998(1): 37-42. | |
34 | Li G C, Han X G, Huang J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems. Acta Ecologica Sinica, 2001(7): 1187-1195. |
李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展. 生态学报, 2001(7): 1187-1195. | |
35 | Stanford G, Smith S J. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 36: 465-472. |
36 | Vervaet H, Massart B, Boeckx P, et al. Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biology and Fertility of Soils, 2002, 36(2): 93-101. |
37 | Ouyang X J, Zhou G Y, Wei S G, et al. Soil organic carbon and nitrogen mineralization in the succession sequence of forest vegetation restoration in the south subtropical region. Chinese Journal of Applied Ecology, 2007(8): 1688-1694. |
欧阳学军, 周国逸, 魏识广, 等. 南亚热带森林植被恢复演替序列的土壤有机碳氮矿化. 应用生态学报, 2007(8): 1688-1694. | |
38 | Gao Z Z, Duan W D, Hu K, et al. Effects of temperature and moisture on soil nitrogen mineralization in typical aroma tobacco-growing areas. Soils, 2019, 51(3): 442-450. |
高真真, 段卫东, 胡坤, 等. 温度和水分对典型香型烟区植烟土壤氮素矿化的影响. 土壤, 2019, 51(3): 442-450. | |
39 | Zand-Parsa S, Sepaskhah A R, Ronaghi A. Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management, 2006, 81: 227-256. |
[1] | 李红梅. 柴达木盆地气候变化对植被的影响分析[J]. 草业学报, 2018, 27(3): 13-23. |
[2] | 韩梦琪, 潘占磊, 靳宇曦, 秦洁, 李江文, 王忠武, 韩国栋. 短花针茅荒漠草原土壤氮素矿化对载畜率的响应[J]. 草业学报, 2017, 26(9): 27-35. |
[3] | 秦燕, 何峰, 仝宗永, 谢开云, 王栋, Gammal, 权国玲, 宋谦, 王虎, 张威震, 李向林. 施肥对羊草草原土壤氮素转化的影响[J]. 草业学报, 2016, 25(10): 48-55. |
[4] | 马维伟, 王辉, 李广, 赵锦梅, 王跃思. 尕海湿地CH4、CO2和N2O通量特征初步研究[J]. 草业学报, 2015, 24(8): 1-10. |
[5] | 陈龙飞, 何志斌, 杜军, 杨军军, 朱喜. 土壤碳循环主要过程对气候变暖响应的研究进展[J]. 草业学报, 2015, 24(11): 183-194. |
[6] | 范月君,侯向阳,石红霄,师尚礼. 气候变暖对草地生态系统碳循环的影响[J]. 草业学报, 2012, 21(3): 294-302. |
[7] | 徐鹏彬,邓建明,赵长明. 甘肃尕海湿地不同海拔草地群落组分及物种多样性研究[J]. 草业学报, 2012, 21(2): 219-226. |
[8] | 邹亚丽,韩方虎,耿丽英,沈禹颖. 温度和湿度对紫花苜蓿土壤氮矿化的影响[J]. 草业学报, 2010, 19(4): 101-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||