草业学报 ›› 2021, Vol. 30 ›› Issue (9): 105-116.DOI: 10.11686/cyxb2020327
• 研究论文 • 上一篇
收稿日期:
2020-07-07
修回日期:
2020-11-02
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
王长庭
作者简介:
Corresponding author. E-mail: wangct@swun.edu.cn, wangct6@163.com基金资助:
Li-tao TANG(), Rui MAO, Chang-ting WANG(), Jie LI, Lei HU, Hong-biao ZI
Received:
2020-07-07
Revised:
2020-11-02
Online:
2021-08-30
Published:
2021-08-30
Contact:
Chang-ting WANG
摘要:
全球变化背景下,持续的氮沉降加速了陆地生态系统的磷循环,进而引发了生态系统中潜在的磷限制,因此研究氮磷耦合对于植物应对环境变化导致的养分限制至关重要。以川西北高寒草甸为研究对象,通过微根管原位监测与室内分析相结合的方法探讨了青藏高原高寒草甸植物根系动态变化特征对不同梯度氮磷添加的响应机制及其与土壤理化特性间的相互关系。结果显示:氮磷(NP)添加增加了表层(0~10 cm)土壤全磷、速效磷以及速效氮含量,整体上降低了土壤pH和C∶P,但对土壤全氮和有机碳含量影响微弱;氮磷添加不仅延长了根系寿命,还使得表层根系现存量提高了8.79(NP20)和13.21 mm·cm-3(NP30),生产量、死亡量分别提高了3.17(NP30)和2.92 mm·cm-3(NP30),但深层(10~20 cm)根系现存量降低了8.85(NP10)和5.37 mm·cm-3(NP30),生产量降低了1.63(NP10)和1.43 mm·cm-3(NP20),死亡量降低了2.14(NP10)和1.78 mm·cm-3(NP30);另外,根系生产量、死亡量及现存量与土壤速效养分的相关性总体上达到了极显著水平(P<0.01)。综上可知,氮磷添加通过改变土壤可利用性氮磷含量,不仅使得植物根系分布浅层化,而且以延长根系寿命的方式减缓了根系周转,进而减少了根系对碳的消耗,增强了其碳汇功能,从而改变了高寒草甸生态系统的碳分配格局。
唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116.
Li-tao TANG, Rui MAO, Chang-ting WANG, Jie LI, Lei HU, Hong-biao ZI. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow[J]. Acta Prataculturae Sinica, 2021, 30(9): 105-116.
项目Item | 0~10 cm | 10~20 cm |
---|---|---|
生产量Production | 6.31±1.40 | 5.50±0.83 |
死亡量Mortality | 7.27±1.03 | 5.06±0.61 |
现存量Standing root length | 30.36±3.77 | 25.06±2.13 |
表1 高寒草甸植物根系生物量概况
Table 1 Survey of plant root biomass in alpine meadow (mm·cm-3)
项目Item | 0~10 cm | 10~20 cm |
---|---|---|
生产量Production | 6.31±1.40 | 5.50±0.83 |
死亡量Mortality | 7.27±1.03 | 5.06±0.61 |
现存量Standing root length | 30.36±3.77 | 25.06±2.13 |
项目 Item | 0~10 cm | 10~20 cm | ||||||
---|---|---|---|---|---|---|---|---|
CK | NP10 | NP20 | NP30 | CK | NP10 | NP20 | NP30 | |
土壤含水量Soil water content (SWC,%) | 30.21±0.72Aa | 26.22±0.23Bc | 26.11±0.06Bc | 28.25±0.76Bb | 31.35±1.13Aa | 30.12±0.60Aa | 29.38±0.45Aa | 31.92±0.38Aa |
土壤紧实度Soil compactness (SC,Pa) | 223.12±5.49Ba | 227.83±1.83Ba | 233.66±14.30Ba | 236.33±21.39Ba | 257.83±26.29Ab | 272.33±1.67Aa | 279.67±4.83Aa | 292.33±10.57Aa |
pH | 5.77±0.05Aa | 5.61±0.03Aa | 5.62±0.07Aa | 5.70±0.02Aa | 5.73±0.04Aa | 5.50±0.07Ab | 5.33±0.03Bb | 5.38±0.06Ab |
土壤有机碳Soil organic carbon (SOC,g·kg-1) | 64.34±3.57Aa | 69.32±3.24Aa | 73.48±2.98Aa | 74.83±2.77Aa | 54.87±4.01Aa | 53.20±3.66Ba | 49.83±2.78Ba | 50.24±3.34Ba |
全氮Total N (TN,g·kg-1) | 6.38±0.43Aa | 6.92±0.49Aa | 7.34±0.33Aa | 7.41±0.73Aa | 5.34±0.36Aa | 5.61±0.25Aa | 5.08±0.52Aa | 5.10±0.57Aa |
速效氮Available N (AN,mg·kg-1) | 343.36±4.23Ab | 359.73±5.34Ab | 380.35±7.23Aa | 394.45±8.24Aa | 290.33±4.44Ba | 230.30±6.77Bb | 271.95±5.57Ba | 286.65±4.72Ba |
全磷Total P (TP,g·kg-1) | 0.73±0.05Ac | 0.88±0.05Ac | 2.22±0.18Aa | 1.03±0.09Ab | 0.93±0.07Aa | 0.82±0.05Aa | 0.88±0.06Ba | 0.80±0.04Aa |
速效磷Available P (AP,mg·kg-1) | 5.40±0.47Ab | 5.50±0.29Ab | 10.20±0.71Aa | 7.20±0.34Aa | 5.35±0.57Aa | 3.60±0.47Aab | 3.05±0.69Bb | 4.30±0.85Bab |
碳氮比C∶N | 10.35±1.48Aa | 10.24±1.35Aa | 10.21±1.26Aa | 10.29±1.26Aa | 10.66±1.81Aa | 9.81±1.63Aa | 10.22±1.85Aa | 10.27±1.85Aa |
碳磷比C∶P | 88.67±2.45Aa | 78.92±1.38Ab | 33.12±0.64Bd | 72.54±0.81Ac | 65.09±0.50Ba | 59.16±0.07Bb | 56.55±0.09Ab | 62.61±0.33Bb |
氮磷比N∶P | 8.99±1.52Aa | 8.01±1.18Aa | 8.33±0.34Aa | 7.28±0.97Aa | 5.88±0.99Aa | 7.02±1.20Aa | 5.91±1.05Aa | 6.52±0.19Aa |
表2 氮磷添加梯度对高寒草甸土壤养分的影响
Table 2 Effect of nitrogen and phosphorus addition on soil nutrients of alpine meadow (mean±SE)
项目 Item | 0~10 cm | 10~20 cm | ||||||
---|---|---|---|---|---|---|---|---|
CK | NP10 | NP20 | NP30 | CK | NP10 | NP20 | NP30 | |
土壤含水量Soil water content (SWC,%) | 30.21±0.72Aa | 26.22±0.23Bc | 26.11±0.06Bc | 28.25±0.76Bb | 31.35±1.13Aa | 30.12±0.60Aa | 29.38±0.45Aa | 31.92±0.38Aa |
土壤紧实度Soil compactness (SC,Pa) | 223.12±5.49Ba | 227.83±1.83Ba | 233.66±14.30Ba | 236.33±21.39Ba | 257.83±26.29Ab | 272.33±1.67Aa | 279.67±4.83Aa | 292.33±10.57Aa |
pH | 5.77±0.05Aa | 5.61±0.03Aa | 5.62±0.07Aa | 5.70±0.02Aa | 5.73±0.04Aa | 5.50±0.07Ab | 5.33±0.03Bb | 5.38±0.06Ab |
土壤有机碳Soil organic carbon (SOC,g·kg-1) | 64.34±3.57Aa | 69.32±3.24Aa | 73.48±2.98Aa | 74.83±2.77Aa | 54.87±4.01Aa | 53.20±3.66Ba | 49.83±2.78Ba | 50.24±3.34Ba |
全氮Total N (TN,g·kg-1) | 6.38±0.43Aa | 6.92±0.49Aa | 7.34±0.33Aa | 7.41±0.73Aa | 5.34±0.36Aa | 5.61±0.25Aa | 5.08±0.52Aa | 5.10±0.57Aa |
速效氮Available N (AN,mg·kg-1) | 343.36±4.23Ab | 359.73±5.34Ab | 380.35±7.23Aa | 394.45±8.24Aa | 290.33±4.44Ba | 230.30±6.77Bb | 271.95±5.57Ba | 286.65±4.72Ba |
全磷Total P (TP,g·kg-1) | 0.73±0.05Ac | 0.88±0.05Ac | 2.22±0.18Aa | 1.03±0.09Ab | 0.93±0.07Aa | 0.82±0.05Aa | 0.88±0.06Ba | 0.80±0.04Aa |
速效磷Available P (AP,mg·kg-1) | 5.40±0.47Ab | 5.50±0.29Ab | 10.20±0.71Aa | 7.20±0.34Aa | 5.35±0.57Aa | 3.60±0.47Aab | 3.05±0.69Bb | 4.30±0.85Bab |
碳氮比C∶N | 10.35±1.48Aa | 10.24±1.35Aa | 10.21±1.26Aa | 10.29±1.26Aa | 10.66±1.81Aa | 9.81±1.63Aa | 10.22±1.85Aa | 10.27±1.85Aa |
碳磷比C∶P | 88.67±2.45Aa | 78.92±1.38Ab | 33.12±0.64Bd | 72.54±0.81Ac | 65.09±0.50Ba | 59.16±0.07Bb | 56.55±0.09Ab | 62.61±0.33Bb |
氮磷比N∶P | 8.99±1.52Aa | 8.01±1.18Aa | 8.33±0.34Aa | 7.28±0.97Aa | 5.88±0.99Aa | 7.02±1.20Aa | 5.91±1.05Aa | 6.52±0.19Aa |
图2 不同梯度氮磷添加下的根系分布特征不同小写字母表示不同处理间差异显著(P<0.05);不同大写字母表示不同土层间差异显著(P<0.05)。Different lowercase letters indicate significant differences in different treatment (P<0.05), different capital letters indicate significant difference in different soil layers (P<0.05).
Fig.2 The distribution pattern of roots under different nitrogen and phosphorus addition gradients
因子 Factor | df | 现存量Standing root length | 死亡量Mortality | 生产量Production | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
处理Treatment | 3 | 44.44 | <0.01 | 18.89 | <0.01 | 7.38 | <0.01 |
深度Depth | 1 | 59.82 | <0.01 | 39.89 | <0.01 | 25.07 | <0.01 |
处理×深度Treatment×depth | 3 | 0.94 | 0.49 | 1.75 | 0.15 | 2.30 | 0.07 |
表3 不同氮磷添加梯度和土层深度对根系特征的双因素方差分析
Table 3 Two-way ANOVA of root characteristics of different nitrogen and phosphorus addition gradients and soil depths
因子 Factor | df | 现存量Standing root length | 死亡量Mortality | 生产量Production | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
处理Treatment | 3 | 44.44 | <0.01 | 18.89 | <0.01 | 7.38 | <0.01 |
深度Depth | 1 | 59.82 | <0.01 | 39.89 | <0.01 | 25.07 | <0.01 |
处理×深度Treatment×depth | 3 | 0.94 | 0.49 | 1.75 | 0.15 | 2.30 | 0.07 |
项目 Item | 现存量 Standing crop | 死亡量 Mortality | 生产量 Production |
---|---|---|---|
土壤含水量SWC | -0.253 | -0.240 | -0.328 |
土壤紧实度SC | 0.443* | 0.606** | 0.441* |
pH | 0.224 | 0.228 | 0.200 |
土壤有机碳SOC | 0.544** | 0.522** | 0.498* |
全氮TN | 0.325 | 0.473* | 0.233 |
速效氮AN | 0.643** | 0.705** | 0.442* |
全磷TP | 0.430* | 0.140 | 0.040 |
速效磷AP | 0.549** | 0.366 | 0.620** |
C∶N | 0.090 | -0.020 | 0.155 |
C∶P | -0.172 | 0.175 | 0.237 |
N∶P | -0.239 | 0.091 | 0.032 |
表4 土壤理化性质与根系特征的相关性
Table 4 Pearson correlation analysis between soil physicochemical properties and root characteristics
项目 Item | 现存量 Standing crop | 死亡量 Mortality | 生产量 Production |
---|---|---|---|
土壤含水量SWC | -0.253 | -0.240 | -0.328 |
土壤紧实度SC | 0.443* | 0.606** | 0.441* |
pH | 0.224 | 0.228 | 0.200 |
土壤有机碳SOC | 0.544** | 0.522** | 0.498* |
全氮TN | 0.325 | 0.473* | 0.233 |
速效氮AN | 0.643** | 0.705** | 0.442* |
全磷TP | 0.430* | 0.140 | 0.040 |
速效磷AP | 0.549** | 0.366 | 0.620** |
C∶N | 0.090 | -0.020 | 0.155 |
C∶P | -0.172 | 0.175 | 0.237 |
N∶P | -0.239 | 0.091 | 0.032 |
1 | Marschner P. Marschner’s mineral nutrition of higher plants. UK: Cambridge University Press, 2011. |
2 | Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. |
3 | Jiang J, Zong N, Song M, et al. Responses of ecosystem respiration and its components to fertilization in an alpine meadow on the Tibetan Plateau. European Journal of Soil Biology, 2013, 56: 101-106. |
4 | Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 2012, 193(3): 696-704. |
5 | Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 2008, 23(2): 95-103. |
6 | Zhang J, Yan X, Su F, et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Science of the Total Environment, 2018, 625(6): 440-448. |
7 | Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10(12): 1135-1142. |
8 | Thomas R Q, Canham C D, Weathers K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 2010, 3(1): 13-17. |
9 | Zhang C, Zhang D W, Deng X G, et al. Various adaptations of meadow forage grasses in response to temperature changes on the Qinghai-Tibet Plateau, China. Plant Growth Regulation, 2019, 88(2): 181-193. |
10 | Fan Y Z, Zhang X Z, Wang J S, et al. Effect of solar radiation on net ecosystem CO2 exchange of alpine meadow on the Tibetan Plateau. Journal of Geographical Sciences, 2011, 21(4): 666-676. |
11 | Yang X X, Ren F, Zhou H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166. |
杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. | |
12 | Wang C T, Long R J, Wang Q L, et al. Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities. Plant and Soil, 2010, 331(1/2): 377-389. |
13 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. | |
14 | Li W B, Jin C J, Guan D X, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology and Biochemistry, 2015, 82: 112-118. |
15 | Rasse D P. Nitrogen deposition and atmospheric CO2 interactions on fine root dynamics in temperate forests: A theoretical model analysis. Global Change Biology, 2002, 8(5): 486-503. |
16 | Brown L K, George T S, Thompson J A, et al. What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Annals of Botany, 2012, 110(2): 319-328. |
17 | Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 1995, 187(2): 159-219. |
18 | Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70(2): 153-226. |
19 | Pregitzer K S, Zak D R, Curtis P S, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist, 1995, 129(4): 579-585. |
20 | Majdi H, Andersson P. Fine root production and turnover in a Norway spruce stand in northern Sweden: Effects of nitrogen and water manipulation. Ecosystems, 2005, 8(2): 191-199. |
21 | Gaudinski J B, Trumbore S E, Davidson E A, et al. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia, 2001, 129(3): 420-429. |
22 | Martin D, Chambers J. Restoration of riparian meadows degraded by livestock grazing: Above and belowground responses. Plant Ecology, 2002, 163(1): 77-91. |
23 | Rytter R M, Rytter L. Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil. Plant and Soil, 2012, 350(1/2): 205-220. |
24 | Bai W M, Wang Z W, Chen Q S, et al. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 2008, 22(4): 583-591. |
25 | Wang C T, Wang G X, Liu W, et al. Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow. Acta Ecologica Sinica, 2013, 33(10): 3103-3113. |
王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10): 3103-3113. | |
26 | Xue Y W. Effects of fertilization on vegetation and soil of degraded grassland on Northern Tibetan Plateau. Lhasa: Tibet University, 2011. |
薛永伟. 施肥对藏北退化草地植被特征和土壤的影响. 拉萨: 西藏大学, 2011. | |
27 | Nanjing Institute of Soil Research, Chinese Academy of Sciences. Soil physical and chemical analysis. Shanghai: Shanghai Science and Technology Press, 1983. |
中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1983. | |
28 | Wu Y B, Che R X, Ma S, et al. Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 2014, 34(13): 3529-3537. |
吴伊波, 车荣晓, 马双, 等. 高寒草甸植被细根生产和周转的比较研究. 生态学报, 2014, 34(13): 3529-3537. | |
29 | Woodward C. Nutrient hot spots in a sierra Nevada soil: Physical assessments and contributing factors. Reno: University of Nevada, 2012. |
30 | Pregitzer, Hendrick K S. Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. Journal of Ecology, 1996, 84(2): 167-176. |
31 | Xia W J, Ji J H, Liu J, et al. Effect of long-term fertilization on soil phosphorus characteristics and loss risk of red soil. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1876-1886. |
夏文建, 冀建华, 刘佳, 等. 长期不同施肥红壤磷素特征和流失风险研究. 中国生态农业学报, 2018, 26(12): 1876-1886. | |
32 | Li Y, Liu Y L, Bai Y J, et al. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil. Chinese Journal Applied Ecology, 2019, 30(4): 1327-1334. |
李渝, 刘彦伶, 白怡婧, 等. 黄壤稻田土壤微生物生物量碳磷对长期不同施肥的响应. 应用生态学报, 2019, 30(4): 1327-1334. | |
33 | Li Y, Xu X H, Sun W, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. |
李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 2019, 43(2): 174-184. | |
34 | Wang W Y, Zhou H K, Yang L, et al. Diversity of soil nitrogen use by plants in Alpine Kobresia tibetica meadow. Journal of Natural Resources, 2014, 29(2): 249-255. |
王文颖, 周华坤, 杨莉, 等. 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 2014, 29(2): 249-255. | |
35 | Rodney T V, Jeffrey A C, Timothy J C. Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry, 2020, 142: 107727. |
36 | Kong B B, Wei X H, Du J L, et al. Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(3): 187-199. |
孔彬彬, 卫欣华, 杜家丽, 等. 刈割和施肥对高寒草甸物种多样性和功能多样性时间动态及其关系的影响. 植物生态学报, 2016, 40(3): 187-199. | |
37 | Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant. Plant Physiology, 2011, 156(3): 997-1005. |
38 | Zi H B, Dai D, Hu L, et al. Responses of soil microbial functional diversity to phosphorus addition in an alpine meadow on Northwestern Plateau of Sichuan Province. Chinese Journal of Soil Science, 2017, 48(3): 647-655. |
字洪标, 代迪, 胡雷, 等. 川西北高寒草甸土壤微生物功能多样性对磷(P)添加的响应. 土壤通报, 2017, 48(3): 647-655. | |
39 | Cammeraat E L H, Risch A C. The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 2008, 132(2): 285-294. |
40 | Yu H. Effects of changing soil acidity/alkalinity on soil nitrogen and greenhouse gas fluxes in a Pinustabulaeformis forest in Taiyue. Beijing: Beijing Forestry University, 2019. |
于辉. 土壤酸/碱环境变化对太岳山油松林土壤氮素及温室气体的影响. 北京: 北京林业大学, 2019. | |
41 | Luo P, Han X, Wang Y, et al. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Annals of Microbiology, 2015, 65(1): 533-542. |
42 | Rajaniemi T K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 2002, 90(2): 316-324. |
43 | Aerts R, Caluwe H D, Beltman B. Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology, 2008, 84(12): 3198-3208. |
44 | Qu P. Effects of increasing nitrogen and reducing water on carbon and nitrogen distribution of herbaceous plants in early spring. Harbin: Heilongjiang University, 2018. |
曲鹏. 增氮减水对早春草本植物碳、氮分配的影响. 哈尔滨: 黑龙江大学, 2018. | |
45 | Bai Y T, Wei Z J, Dai J Z, et al. Responses of plant and soil C∶N∶P stoichiometry to fertilization in Leymus chinensis mowing meadow. Ecology and Environmental Sciences, 2017, 26(4): 620-627. |
白玉婷, 卫智军, 代景忠, 等. 施肥对羊草割草地植物群落和土壤C:N:P生态化学计量学特征的影响. 生态环境学报, 2017, 26(4): 620-627. | |
46 | Bessler H, Temperton V M, Roscher C, et al. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology, 2009, 90(6): 1520-1530. |
47 | Kurz I, O’Reilly C D, Tunney H. Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland. Agriculture Ecosystems and Environment, 2006, 113(1//2/3/4): 378-390. |
48 | Wei L. Effects of nitrogen addition and mowing on key processes of belowground carbon cycling in natural grassland ecosystem on the Loess Plateau. Beijing: University of Chinese Academy Sciences, 2017. |
魏琳. 氮添加和刈割对黄土高原天然草地生态系统地下碳循环关键过程的影响. 北京: 中国科学院大学, 2017. | |
49 | Zhang X. Effects of increasing nitrogen and reducing water on fine root morphology and anatomy of main tree species in Changbai Mountain. Harbin: Heilongjiang University, 2019. |
张鑫. 增氮减水对长白山主要树种细根形态和解剖的影响. 哈尔滨: 黑龙江大学, 2019. | |
50 | He J, Jin Y, Du Y L, et al. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Frontiers in Plant Science, 2017, 8(5): 1499-1509. |
51 | Li C J. Regulation of plant nutritional stress and its adaptive response. Beijing: China Agricultural University Press, 2000. |
李春俭. 植物营养胁迫及其适应性反应的调节. 北京: 中国农业大学出版社, 2000. | |
52 | Li X. Effects of close-to-nature forest reconstruction on distribution patterns of carbon storage in young and middle age forests in Ningbo area. Shanghai: East China Normal University, 2019. |
李旭. 近自然林改造对宁波地区中幼林碳储量分布格局的影响. 上海: 华东师范大学, 2019. | |
53 | Sanginga N. Role of biological nitrogen fixation in legume based cropping systems: A case study of West-Africa farming systems. Plant and Soil, 2003, 252(1): 25-39. |
54 | Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7362-7366. |
55 | Chapin F S Ⅲ, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology (2nd Edition). New York: Springer, 2011. |
56 | Jiang C M, Yu G R, Li Y N, et al. Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment. Ecological Engineering, 2012, 44: 1-9. |
57 | Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytologist, 1994, 127(4): 635-674. |
58 | Yang Y, Fang J, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15(11): 2723-2729. |
59 | Wei X, Wang Z Q, Zhang G Z. Morphological and activity variation of mitochondria in fine roots of Fraxinus mandshurica seedling under drought stress. Chinese Journal of Plant Ecology, 2010, 34(12): 1454-1462. |
卫星, 王政权, 张国珍. 干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化. 植物生态学报, 2010, 34(12): 1454-1462. | |
60 | Dat J F, Pellinen R, Beeckman T, et al. Changes in hydrogen peroxide homeostasis trigger active cell death process in tobacco. Plant Journal, 2003, 33(4): 621-632. |
61 | Reed J C, Green D R. Remodeling for demolition: Changes in mitochondrial ultrastructure during apoptosis. Molecular Cell, 2002, 9(1): 1-3. |
62 | Van D K T A J, Berendse F. Root life spans of four grass species from habitats differing in nutrient availability. Functional Ecology, 2002, 16(2): 198-203. |
63 | Ryan M G, Lavigne D, Gower S T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. Journal of Geophysical Research-Atmospheres, 1997, 102(24): 28871-28884. |
64 | Ling H, Yuan Y D, Yang Z J, et al. Influencing factors of fine root lifespans in two Chinese fir plantations in subtropical China. Acta Ecologica Sinica, 2011, 31(4): 1130-1138. |
凌华, 袁一丁, 杨智杰, 等. 杉木人工林细根寿命的影响因素. 生态学报, 2011, 31(4): 1130-1138. | |
65 | Wang J J. Effects of nighttime warming and changing rainfall on root growth and death of three temperate steppe types. Kaifeng: Henan University, 2018. |
王佳佳. 夜间增温和改变降雨对三种温带草原类型根系生长和死亡的影响. 开封: 河南大学, 2018. | |
66 | Peng Y F, Guo D L, Yang Y H. Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 2017, 26(1): 102-114. |
67 | Wang Q, Wang J Z, Jiang L L, et al. Effects of nitrogen and phosphorus additions on plant community characteristics and related ecological processe. Acta Agrestia Sinica, 2017, 25(5): 914-920. |
王奇, 王金枝, 姜丽丽, 等. 氮和磷添加对草原群落特征及有关生态过程的影响. 草地学报, 2017, 25(5): 914-920. | |
68 | Hishi T. Heterogeneity of individual roots within the fine root architecture: Causal links between physiological and ecosystem functions. Journal of Forest Research, 2007, 12(2): 126-133. |
69 | Guo D L, Fan P P. Four hypotheses about effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology, 2007, 18(10): 2354-2360. |
郭大立, 范萍萍. 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 2007, 18(10): 2354-2360. | |
70 | Burton A J, Hendrick R L, Pregitzer K S. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3): 389-399. |
71 | Farrar J F, Jones D L. The control of carbon acquisition by roots. New Phytologist, 2000, 147(1): 43-53. |
72 | Qiu J, Gu J C, Jiang H Y, et al. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica. Chinese Journal of Plant Ecology, 2010, 34(9): 1066-1074. |
邱俊, 谷加存, 姜红英, 等. 樟子松人工林细根寿命估计及影响因子研究. 植物生态学报, 2010, 34(9):1066-1074. | |
73 | Eissenstat D M, Yanai R D. The ecology of root lifespan. Advances in Ecological Research, 1997, 27: 1-60. |
[1] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[2] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[3] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[4] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[5] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[6] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[7] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[8] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[9] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[10] | 郭剑波, 赵国强, 贾书刚, 董俊夫, 陈龙, 王淑平. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9): 85-93. |
[11] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[12] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[13] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[14] | 马海霞, 张德罡, 陈瑾, 郭春秀, 董永平, 马源, 康玉坤, 陈璐, 杜凯, 陈建纲. 祁连山东段高寒草甸土壤持水能力在小尺度不同坡面位置的分异特征[J]. 草业学报, 2020, 29(1): 28-37. |
[15] | 蔺芳, 刘晓静, 童长春, 吴勇. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究[J]. 草业学报, 2019, 28(9): 45-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||