草业学报 ›› 2022, Vol. 31 ›› Issue (1): 81-94.DOI: 10.11686/cyxb2020502
尹作天1,2(), 王玉辉1(), 周广胜3, 马全会1,2, 刘晓迪1,2, 贾丙瑞1, 蒋延玲1
收稿日期:
2020-11-10
修回日期:
2021-01-05
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
王玉辉
作者简介:
Corresponding author. E-mail: yhwang@ibcas.ac.cn基金资助:
Zuo-tian YIN1,2(), Yu-hui WANG1(), Guang-sheng ZHOU3, Quan-hui MA1,2, Xiao-di LIU1,2, Bing-rui JIA1, Yan-ling JIANG1
Received:
2020-11-10
Revised:
2021-01-05
Online:
2021-12-01
Published:
2021-12-01
Contact:
Yu-hui WANG
摘要:
陆地生态系统碳收支对极端气候变化十分敏感。为探究石生针茅荒漠草原碳收支对土壤极端干旱过程的响应机制,本研究以荒漠草原石生针茅为试验材料,采用遮雨棚人工控水方法模拟土壤的极端干旱过程,测定多项石生针茅碳交换特征参数,分析其变化特征并对比不同参数对干旱的敏感性差异。结果表明:水分利用效率(WUE)与土壤含水量(SWC)呈显著的指数关系,气孔导度(Gs)、最大羧化速率(Vcmax)和磷酸丙糖利用率(TPU)与SWC呈显著的线性关系,其余特征参数与SWC均呈显著的二次曲线关系,且在干旱胁迫下叶片尺度的特征参数最先出现下降响应;饱和光强下叶片净光合速率(Asat)、蒸腾速率(E)、最大电子传递速率(Jmax)、PSⅡ的有效光化学量子产量(Fv′/Fm′)、PSⅡ的实际光化学效率(ΦPSⅡ)和生态系统净碳交换(NEE)均存在水分阈值;在干旱过程中,Gs、WUE、Vcmax、TPU、生态系统呼吸速率(Re)和生态系统总初级生产力(GEP)最先开始下降,E、NEE和Jmax的整体变化速率较快;导致石生针茅叶片光合速率下降的主要原因由气孔限制转为非气孔限制时的SWC为14.73%,而石生针茅生态系统由碳汇转变为碳源的SWC为7.85%。可见,石生针茅生态系统的碳交换与土壤含水量密切相关,且土壤极端干旱显著降低了其碳吸收。
尹作天, 王玉辉, 周广胜, 马全会, 刘晓迪, 贾丙瑞, 蒋延玲. 荒漠草原石生针茅光合特性对渐进式土壤干旱过程的响应及敏感性分析[J]. 草业学报, 2022, 31(1): 81-94.
Zuo-tian YIN, Yu-hui WANG, Guang-sheng ZHOU, Quan-hui MA, Xiao-di LIU, Bing-rui JIA, Yan-ling JIANG. Response and sensitivity of photosynthesis of Stipa tianschanica in desert steppe to developing soil drought process[J]. Acta Prataculturae Sinica, 2022, 31(1): 81-94.
指标 Index | R2 | 赤池信息准则Akaike information criterion | ||||||
---|---|---|---|---|---|---|---|---|
线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | 线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | |
净光合速率Asat | 0.72** | 0.77** | 0.64** | 0.70** | 71.71 | 71.25 | 75.28 | 72.78 |
水分利用效率WUE | 0.78** | 0.79** | 0.80** | 0.79** | 22.62 | 23.65 | 21.04 | 21.80 |
最大电子传输速率Jmax | 0.84** | 0.96** | 0.71** | 0.80** | 96.21 | 83.36 | 102.14 | 98.47 |
最大羧化速率Vcmax | 0.91** | 0.91** | 0.86** | 0.90** | 82.51 | 84.48 | 86.23 | 83.63 |
磷酸丙糖利用率TPU | 0.93** | 0.94** | 0.87** | 0.91** | 32.99 | 33.72 | 38.34 | 34.73 |
蒸腾速率E | 0.55** | 0.77** | 0.45** | 0.54** | 74.28 | 63.52 | 78.06 | 74.67 |
胞间二氧化碳浓度Ci | 0.32* | 0.52** | 0.34** | 0.41** | 215.19 | 210.50 | 214.53 | 212.48 |
气孔导度Gs | 0.85** | 0.86** | 0.77** | 0.83** | -70.68 | -70.34 | -62.18 | -67.80 |
光系统Ⅱ有效光化学量子产量Fv′/Fm′ | 0.75** | 0.90** | 0.69** | 0.78** | -50.10 | -64.73 | -46.03 | -52.35 |
光系统Ⅱ实际光化学效率ΦPSII | 0.62** | 0.80** | 0.56** | 0.65** | -66.68 | -76.72 | -63.99 | -68.12 |
生态系统净碳交换NEE | 0.71** | 0.79** | - | - | 50.64 | 47.98 | - | - |
生态系统呼吸速率Re | 0.96** | 0.97** | 0.89** | 0.94** | 44.42 | 42.95 | 61.56 | 52.89 |
生态系统总初级生产力GEP | 0.95** | 0.97** | 0.83** | 0.90** | 58.24 | 50.62 | 77.15 | 69.43 |
表1 常用回归模型比较
Table 1 Comparison of common regression models
指标 Index | R2 | 赤池信息准则Akaike information criterion | ||||||
---|---|---|---|---|---|---|---|---|
线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | 线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | |
净光合速率Asat | 0.72** | 0.77** | 0.64** | 0.70** | 71.71 | 71.25 | 75.28 | 72.78 |
水分利用效率WUE | 0.78** | 0.79** | 0.80** | 0.79** | 22.62 | 23.65 | 21.04 | 21.80 |
最大电子传输速率Jmax | 0.84** | 0.96** | 0.71** | 0.80** | 96.21 | 83.36 | 102.14 | 98.47 |
最大羧化速率Vcmax | 0.91** | 0.91** | 0.86** | 0.90** | 82.51 | 84.48 | 86.23 | 83.63 |
磷酸丙糖利用率TPU | 0.93** | 0.94** | 0.87** | 0.91** | 32.99 | 33.72 | 38.34 | 34.73 |
蒸腾速率E | 0.55** | 0.77** | 0.45** | 0.54** | 74.28 | 63.52 | 78.06 | 74.67 |
胞间二氧化碳浓度Ci | 0.32* | 0.52** | 0.34** | 0.41** | 215.19 | 210.50 | 214.53 | 212.48 |
气孔导度Gs | 0.85** | 0.86** | 0.77** | 0.83** | -70.68 | -70.34 | -62.18 | -67.80 |
光系统Ⅱ有效光化学量子产量Fv′/Fm′ | 0.75** | 0.90** | 0.69** | 0.78** | -50.10 | -64.73 | -46.03 | -52.35 |
光系统Ⅱ实际光化学效率ΦPSII | 0.62** | 0.80** | 0.56** | 0.65** | -66.68 | -76.72 | -63.99 | -68.12 |
生态系统净碳交换NEE | 0.71** | 0.79** | - | - | 50.64 | 47.98 | - | - |
生态系统呼吸速率Re | 0.96** | 0.97** | 0.89** | 0.94** | 44.42 | 42.95 | 61.56 | 52.89 |
生态系统总初级生产力GEP | 0.95** | 0.97** | 0.83** | 0.90** | 58.24 | 50.62 | 77.15 | 69.43 |
土壤干旱程度 Soil drought severity | 土壤含水量 SWC (%) | 土壤相对含水量SRWC (%) | 干旱天数Drought days (d) |
---|---|---|---|
轻度干旱Mild drought stress | 12.35±1.20 | 59.15 | 8 |
中度干旱Moderate drought stress | 10.08±0.69 | 48.28 | 10 |
重度干旱Severe drought stress | 8.14±1.05 | 38.98 | 15 |
表2 土壤含水量随干旱程度的变化
Table 2 Changes in soil moisture content with drought
土壤干旱程度 Soil drought severity | 土壤含水量 SWC (%) | 土壤相对含水量SRWC (%) | 干旱天数Drought days (d) |
---|---|---|---|
轻度干旱Mild drought stress | 12.35±1.20 | 59.15 | 8 |
中度干旱Moderate drought stress | 10.08±0.69 | 48.28 | 10 |
重度干旱Severe drought stress | 8.14±1.05 | 38.98 | 15 |
图6 石生针茅生态系统碳交换特征参数在土壤干旱过程中的最大值和最小值圆形代表各参数最大值,三角形代表最小值;从左到右3条虚线分别划分了无旱、轻旱、中旱、重旱4个区间。下同。The circle and the triangle mean the maximum and the minimum of parameters. The four intervals divided by the three dashed lines from left to right mean no drought, mild drought, moderate drought and severe drought, respectively. The same below.
Fig.6 The maximum and the minimum of ecosystem CO2 exchange parameters in S. tianschanica during soil drought process
图7 石生针茅生态系统碳交换特征参数对土壤含水量的响应曲线(标准化后)
Fig.7 Response curves of ecosystem CO2 exchange parameters in S. tianschanica to soil water content (standardized)
1 | Schimel D S. Terrestrial ecosystems and the carbon-cycle. Global Change Biology, 1995, 1: 77-91. |
2 | Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming. Chinese Science Bulletin, 2018, 63(2): 136-140. |
方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应. 科学通报, 2018, 63(2): 136-140. | |
3 | Piao S L, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 2013, 19: 2117-2132. |
4 | Intergovernmental Panel on Climate change. Climate change 2013: The physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013. |
5 | Jackson R B, Carpenter S R, Dahm C N, et al. Water in a changing world. Ecological Applications, 2001, 11: 1027-1045. |
6 | Giorgi F, Mearns L O, Shields C, et al. Regional nested model simulations of present day and 2×CO2 climate over the central plains of the US. Climatic Change, 1998, 40: 457-493. |
7 | Pan R C. Plant physiology. Beijing: Higher Education Press, 2012. |
潘瑞炽. 植物生理学. 北京: 高等教育出版社, 2012. | |
8 | Xu Z Z, Zhou G S. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biology, 2011, 11: 21. |
9 | Reyer C P O, Leuzinger S, Rammig A, et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Global Change Biology, 2013, 19(1): 75-89. |
10 | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(22): 529-533. |
11 | Song J, Wan S Q, Piao S L, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3: 1309-1320. |
12 | Chen S P, Lin G H, Huang J H, et al. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 2009, 15: 2450-2461. |
13 | Xu B, Arain M A, Black T A, et al. Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems. Global Change Biology, 2019, 26: 901-918. |
14 | Maestre F T, Eldridge D J, Soliveres S, et al. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics, 2016, 47: 215-237. |
15 | Phillips O L, Aragao L E O C, Lewis S L, et al. Drought sensitivity of the Amazon Rainforest. Science, 2009, 323: 1344-1347. |
16 | Wang Y H, Chen J Q, Zhou G S, et al. Predominance of precipitation event controls ecosystem CO2 exchange in an Inner Mongolian desert grassland, China. Journal of Cleaner Production, 2018, 197: 781-793. |
17 | Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329(5994): 940-943. |
18 | Zscheischler J, Michalak A M, Schwalm C, et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 2014, 28: 585-600. |
19 | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295. |
20 | Adams J M, Faure H, Fauredenard L, et al. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348: 711-714. |
21 | Zhao T Q, Ouyang Z Y, Jia L Q, et al. Ecosystem services and their valuation of China grassland. Acta Ecologica Sinica, 2004, 24(6): 1101-1110. |
赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110. | |
22 | Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B-Biological Sciences, 2007, 362: 997-1008. |
23 | Wei Z J, Han G D, Zhao G, et al. Research of chinese desert grassland ecosystem. Beijing: Science Press, 2013. |
卫智军, 韩国栋, 赵钢, 等. 中国荒漠草原生态系统研究. 北京: 科学出版社, 2013. | |
24 | Wu S H, Pan T, Liu Y H, et al. Comprehensive climate change risk regionalization of China. Acta Geographica Sinica, 2017, 72(1): 3-17. |
吴绍洪, 潘韬, 刘燕华, 等. 中国综合气候变化风险区划. 地理学报, 2017, 72(1): 3-17. | |
25 | Qiao X G, Guo K, Zhao L Q, et al. Distribution, community characteristics and classification of Stipa tianschanica var. klemenzii steppe in China. Chinese Journal of Plant Ecology, 2017, 41(2): 231-237. |
乔鲜果, 郭柯, 赵利清, 等. 中国石生针茅草原的分布、群落特征和分类. 植物生态学报, 2017, 41(2): 231-237. | |
26 | Wang H Z, Han L, Xu Y L, et al. Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 2017, 37(7): 2315-2324. |
王海珍, 韩路, 徐雅丽, 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 2017, 37(7): 2315-2324. | |
27 | Wang L L, Li Q H, Xu J, et al. Morphology and physiology characteristic responses of different provenances of Artemisia ordosica to drought stress. Scientia Silvae Sinicae, 2015, 51(2): 37-43. |
王林龙, 李清河, 徐军, 等. 不同种源油蒿形态与生理特征对干旱胁迫的响应. 林业科学, 2015, 51(2): 37-43. | |
28 | Li L Z, Zhang D G, Xin X P, et al. Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica, 2009, 29(10): 5271-5279. |
李林芝, 张德罡, 辛晓平, 等. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性. 生态学报, 2009, 29(10): 5271-5279. | |
29 | Ma Q H, Liu X D, Li Y B, et al. Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 2020, 108: 598-610. |
30 | Sharkey T D, Bernacchi C J, Farquhar G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell and Environment, 2007, 30: 1035-1040. |
31 | Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 1999, 16(4): 444-448. |
张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4): 444-448. | |
32 | You X, Gong J R. Significance and application of chlorophyll fluorescence dynamics process parameters. Journal of West China Forestry Science, 2012, 41(5): 90-94. |
尤鑫, 龚吉蕊. 叶绿素荧光动力学参数的意义及实例辨析. 西部林业科学, 2012, 41(5): 90-94. | |
33 | Liu Y, Lei S G, Cheng L S, et al. Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence. Acta Ecologica Sinica, 2018, 38(9): 3069-3077. |
刘英, 雷少刚, 程林森, 等. 采煤塌陷影响下土壤含水量变化对柠条气孔导度、蒸腾与光合作用速率的影响. 生态学报, 2018, 38(9): 3069-3077. | |
34 | Lin X L, Xu Z Z, Wang Y H, et al. Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica, 2008(10): 4718-4724. |
林祥磊, 许振柱, 王玉辉, 等. 羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟. 生态学报, 2008(10): 4718-4724. | |
35 | Xu H X, Li Q, Huang Y, et al. The effect of soil environmental factors on the carbon flux over Stipa krylovii ecosystem. Scientia Geographica Sinica, 2014, 34(11): 1385-1390. |
薛红喜, 李琪, 黄瑜, 等. 土壤环境因子对克氏针茅草地生态系统碳通量的影响. 地理科学, 2014, 34(11): 1385-1390. | |
36 | Reichstein M, Tenhunen J D, Roupsard O, et al. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Global Change Biology, 2002, 8: 999-1017. |
37 | Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000, 51: 659-668. |
38 | Sharkey T D. Photosynthesis in intact leaves of C3 plants-physics, physiology and rate limitations. Botanical Review, 1985, 51: 53-105. |
39 | Farquhar G D, Caemmerer S V, Berry J A. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90. |
40 | Han L, Wang H Z, Xu Y L, et al. Responses of transpiration rate of Populus pruinosa to stomatal conductance and vapor pressure deficient. Journal of Arid Land Resources and Environment, 2016, 30(8): 193-197. |
韩路, 王海珍, 徐雅丽, 等. 灰胡杨蒸腾速率对气孔导度和水汽压差的响应. 干旱区资源与环境, 2016, 30(8): 193-197. | |
41 | Li J C, Yan B G, Pan Z X, et al. Threshold effect of soil moisture on photosynthetic efficiency of tomato leaves at the seedling stage in Dry-hot Valley, Yunnan, China. Chinese Journal of Tropical Crops, 2019, 40(11): 2278-2284. |
李建查, 闫帮国, 潘志贤, 等. 干热河谷番茄苗期叶片光合效率的土壤水分阈值效应. 热带作物学报, 2019, 40(11): 2278-2284. | |
42 | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33: 317-345. |
43 | Schwalm C R, Anderegg W R L, Michalak A M, et al. Global patterns of drought recovery. Nature, 2017, 548: 202-205. |
44 | Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565: 476-479. |
45 | Wang Q, Yang Y, Liu Y Y, et al. Assessing the impacts of drought on grassland net primary production at the global scale. Scientific Reports, 2019, 9: 14041. |
46 | Schwalm C R, Williams C A, Schaefer K, et al. Assimilation exceeds respiration sensitivity to drought: A fluxnet synthesis. Global Change Biology, 2010, 16: 657-670. |
47 | Shi Z, Thomey M L, Mowll W, et al. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis. Biogeosciences, 2014, 11: 621-633. |
48 | Galmes J, Ribas-Carbo M, Medrano H, et al. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Journal of Experimental Botany, 2011, 62: 653-665. |
49 | Zhang Y M, Zhou G S. Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 2012, 32(18): 5907-5917. |
张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 2012, 32(18): 5907-5917. | |
50 | Sharkey T D. Is triose phosphate utilization important for understanding photosynthesis? Journal of Experimental Botany, 2019, 70: 5521-5525. |
51 | Gu D X, Wang Q, Otieno D. Canopy transpiration and stomatal responses to prolonged drought by a dominant desert species in Central Asia. Water, 2017, 9: 404. |
52 | Yu M H. Canopy temperature and stomatal conductance characteristics of typical sand-fixation plants and their responses to soil moisture. Beijing: Beijing Forestry University, 2016. |
于明含. 典型固沙植物冠层温度和气孔导度特征及其对土壤水分的响应. 北京: 北京林业大学, 2016. | |
53 | Tang Z C. Response and adaptability of plant to water stress. Plant Physiology Communication, 1983(4): 1-7. |
汤章城. 植物对水分胁迫的反应和适应性. 植物生理学通讯, 1983(4): 1-7. | |
54 | Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76. |
55 | Cao S K, Feng Q, Si J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29(7): 3882-3892. |
曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29(7): 3882-3892. | |
56 | Liu W Z. Dynamic interrelations of crop production, water consumption and water use efficiency. Journal of Natural Resources, 1998, 13(1): 3-5. |
刘文兆. 作物生产、水分消耗与水分利用效率间的动态联系. 自然资源学报, 1998, 13(1): 3-5. | |
57 | Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30: 239-264. |
58 | Manzoni S, Vico G, Katul G, et al. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Functional Ecology, 2011, 25: 456-467. |
59 | Zou J, Ding J L, Qin Y, et al. Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 145-152. |
邹杰, 丁建丽, 秦艳, 等. 遥感分析中亚地区生态系统水分利用效率对干旱的响应. 农业工程学报, 2018, 34(9): 145-152. | |
60 | Liu Y T, Li J, Jin Y Q, et al. The influence of drought strength on soil respiration in a woody savanna ecosystem, Southwest China. Plant and Soil, 2018, 428: 321-333. |
61 | Liu L L, Wang X, Lajeunesse M J, et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 2016, 22: 1394-1405. |
62 | Reichstein M, Tenhunen J D, Roupsard O, et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Functional Ecology, 2002, 16: 27-39. |
63 | McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 2008, 178: 719-739. |
64 | Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1: 1285-1291. |
65 | Duan H L, Wu J P, Liu W F, et al. Water relations and carbon dynamics under drought stress and the mechanisms of drought-induced tree mortality. Scientia Silvae Sinicae, 2015, 51(11): 113-120. |
段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理. 林业科学, 2015, 51(11): 113-120. | |
66 | Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539. |
67 | Sevanto S, McDowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell and Environment, 2014, 37: 153-161. |
68 | Jin Y, Wang C K. Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. |
金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032. | |
69 | Mitchell P J, O'Grady A P, Tissue D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 2013, 197: 862-872. |
[1] | 普雪可, 吴春花, 周永瑾, 勉有明, 苗芳芳, 侯贤清, 李荣. 宁南旱区地膜秸秆沟垄双覆盖对土壤水分时空变化及马铃薯产量的影响[J]. 草业学报, 2020, 29(10): 149-160. |
[2] | 王飞, 尹飞, 龙浩强, 李雪, 武岩岩, 焦念元, 马超, 付国占. 玉米‖花生茬口对冬小麦旗叶光化学活性的影响[J]. 草业学报, 2019, 28(7): 123-131. |
[3] | 安婵, 乔建霞, 商建英, 李金升, 赵天赐, 唐士明, 邵新庆, 黄顶, 王堃, 刘克思. 人造湖对毗邻退化草地土壤含水量、电导率和pH的影响[J]. 草业学报, 2018, 27(8): 21-29. |
[4] | 蒋腊梅, 杨晓东, 杨建军, 何学敏, 吕光辉. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. |
[5] | 覃凤飞, 沈益新, 李兰海, 胡增运, 程亮, 马旭龙, 陈青青, 王凌越. 干旱胁迫对新疆三个优势牧草种的光合特性与水分利用效率的影响[J]. 草业学报, 2016, 25(10): 86-94. |
[6] | 赵亚兰, 陈垣, 郭凤霞, 郭志军, 刘希全. 冬播和春播育苗对党参苗栽产量和质量的影响[J]. 草业学报, 2015, 24(10): 139-148. |
[7] | 熊莉,徐振锋,吴福忠,杨万勤,殷睿,李志萍,倪祥银,熊海涛. 踩踏对亚热带沟叶结缕草草坪冬季休眠期土壤呼吸的影响[J]. 草业学报, 2014, 23(2): 83-89. |
[8] | 李广,李玥,黄高宝,罗珠珠,王琦,刘强,燕振刚,赵有益. 不同耕作措施旱地小麦生产应对气候变化的效应分析[J]. 草业学报, 2012, 21(5): 160-168. |
[9] | 吴一群,张辉,林新坚,兰忠明,张伟光,曹卫东. 不同土壤田间含水量对紫云英生长及生理代谢的影响[J]. 草业学报, 2012, 21(1): 156-161. |
[10] | 刘慧霞,王康英,郭兴华. 不同土壤水分条件下硅对坪用高羊茅种子出苗及生物学特性的影响[J]. 草业学报, 2012, 21(1): 199-205. |
[11] | 鱼小军,蒲小鹏,黄世杰,方强恩,徐宁,徐长林. 蚂蚁对东祁连山高寒草地生态系统的影响[J]. 草业学报, 2010, 19(2): 140-145. |
[12] | 刘国利,何树斌,杨惠敏. 紫花苜蓿水分利用效率对水分胁迫的响应及其机理[J]. 草业学报, 2009, 18(3): 207-213. |
[13] | 胡健,蒋勤军,韩烈保,王丽. 草坪草病原菌的抗药性现状及研究进展[J]. 草业学报, 2009, 18(2): 194-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||