草业学报 ›› 2022, Vol. 31 ›› Issue (7): 85-95.DOI: 10.11686/cyxb2021261
李君风(), 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛()
收稿日期:
2021-06-29
修回日期:
2021-09-08
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
邵涛
作者简介:
E-mail: taoshaolan@163.com基金资助:
Jun-feng LI(), Jie ZHAO, Xiao-yue TANG, Tong-tong DAI, Dong DONG, Cheng ZONG, Tao SHAO()
Received:
2021-06-29
Revised:
2021-09-08
Online:
2022-07-20
Published:
2022-06-01
Contact:
Tao SHAO
摘要:
为了提高水稻秸秆的青贮发酵品质,本研究旨在从黑白花奶牛瘤胃中筛选出具有降解纤维素能力的兼性厌氧复合菌系,探讨其对水稻秸秆青贮过程中结构性碳水化合物降解及发酵品质的影响。试验采集了黑白花奶牛瘤胃内容物,经富集培养、刚果红染色初筛,耐酸诱导,滤纸降解复筛,酶活力测定,获得高效兼性厌氧纤维素降解复合菌系M6。试验设4个处理组:1)水稻秸秆直接自然青贮(CK)组;2)灭菌后水稻秸秆青贮(IRR)组;3)灭菌水稻秸秆接种复合乳酸菌(CLAB)青贮组;4)灭菌水稻秸秆接种复合菌系(M6)青贮组,分别于青贮3、6、15、45、60和90 d后开窖取样分析。结果表明,青贮3 d后,M6处理组pH始终低于其他各组,青贮第60天达到最低值(4.62)。青贮45 d后,M6处理组乳酸含量始终显著高于其他各组(P<0.05),且在青贮90 d达到最高值(23.90 g·kg-1 DM)。青贮15 d后,中性洗涤纤维、酸性洗涤纤维和纤维素含量在M6组均显著低于其他各组(P<0.05),且在第90天达到最低值。青贮60 d后,IRR和M6组保持较高水平的水溶性碳水化合物含量,其次为CLAB组。综上所述,复合菌系M6在水稻秸秆青贮过程中具有降解粗纤维和促进乳酸发酵的作用,添加纤维素降解复合菌系可有效改善水稻秸秆青贮发酵品质,为青贮添加剂的研发与应用提供了理论依据。
李君风, 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛. 瘤胃纤维素降解菌系对灭菌水稻秸秆结构性碳水化合物降解的影响[J]. 草业学报, 2022, 31(7): 85-95.
Jun-feng LI, Jie ZHAO, Xiao-yue TANG, Tong-tong DAI, Dong DONG, Cheng ZONG, Tao SHAO. Effect of a rumen cellulolytic microbial consortium on the degradation of structural carbohydrate in sterile rice straw silage[J]. Acta Prataculturae Sinica, 2022, 31(7): 85-95.
时间 Time (d) | 外切葡聚糖酶 Exoglucanase | 内切葡聚糖酶 Endoglucanase | β-葡萄糖苷酶 β-glucosidase | 木聚糖酶 Xylanase |
---|---|---|---|---|
1 | 0.53±0.00 | 0.80±0.03 | 0.36±0.13 | 2.46±0.21 |
2 | 1.03±0.08 | 1.75±0.18 | 0.72±0.10 | 2.31±0.08 |
3 | 1.60±0.19 | 2.57±0.02 | 1.37±0.25 | 2.59±0.13 |
4 | 1.98±0.11 | 2.82±0.16 | 1.55±0.16 | 3.17±0.07 |
5 | 2.40±0.09 | 3.36±0.11 | 1.49±0.19 | 3.76±0.11 |
6 | 2.71±0.20 | 3.44±0.16 | 1.59±0.16 | 3.91±0.06 |
表1 纤维素降解复合菌系M6的各种酶活力
Table 1 Various enzyme activities of cellulolytic microbial consortium M6 (U·mL-1)
时间 Time (d) | 外切葡聚糖酶 Exoglucanase | 内切葡聚糖酶 Endoglucanase | β-葡萄糖苷酶 β-glucosidase | 木聚糖酶 Xylanase |
---|---|---|---|---|
1 | 0.53±0.00 | 0.80±0.03 | 0.36±0.13 | 2.46±0.21 |
2 | 1.03±0.08 | 1.75±0.18 | 0.72±0.10 | 2.31±0.08 |
3 | 1.60±0.19 | 2.57±0.02 | 1.37±0.25 | 2.59±0.13 |
4 | 1.98±0.11 | 2.82±0.16 | 1.55±0.16 | 3.17±0.07 |
5 | 2.40±0.09 | 3.36±0.11 | 1.49±0.19 | 3.76±0.11 |
6 | 2.71±0.20 | 3.44±0.16 | 1.59±0.16 | 3.91±0.06 |
项目 Items | 新鲜水稻秸秆 Fresh rice straw | 灭菌水稻秸秆 Irradiated rice straw | P值 P-value |
---|---|---|---|
干物质 Dry matter (g·kg-1 FW) | 639.50±17.61 | 635.36±9.15 | 0.845 |
水溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 50.21±2.62 | 49.86±4.29 | 0.948 |
粗蛋白 Crude protein (g·kg-1 DM) | 28.63±1.14 | 29.46±1.22 | 0.671 |
缓冲能 Buffering capacity (mEq·kg-1 DM) | 33.70±1.62 | 30.96±1.23 | 0.248 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 428.75±12.03 | 408.78±13.82 | 0.337 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 679.52±6.65 | 674.40±8.14 | 0.652 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FW) | 5.83±0.31 | ND | — |
酵母菌 Yeasts (Log10 cfu·g-1 FW) | 4.29±0.26 | ND | — |
霉菌 Moulds (Log10 cfu·g-1 FW) | 4.15±0.16 | ND | — |
表2 灭菌前后水稻秸秆化学和微生物成分
Table 2 Chemical composition and microbial population of fresh and irradiated rice straw prior to ensiling
项目 Items | 新鲜水稻秸秆 Fresh rice straw | 灭菌水稻秸秆 Irradiated rice straw | P值 P-value |
---|---|---|---|
干物质 Dry matter (g·kg-1 FW) | 639.50±17.61 | 635.36±9.15 | 0.845 |
水溶性碳水化合物 Water soluble carbohydrate (g·kg-1 DM) | 50.21±2.62 | 49.86±4.29 | 0.948 |
粗蛋白 Crude protein (g·kg-1 DM) | 28.63±1.14 | 29.46±1.22 | 0.671 |
缓冲能 Buffering capacity (mEq·kg-1 DM) | 33.70±1.62 | 30.96±1.23 | 0.248 |
酸性洗涤纤维 Acid detergent fiber (g·kg-1 DM) | 428.75±12.03 | 408.78±13.82 | 0.337 |
中性洗涤纤维 Neutral detergent fiber (g·kg-1 DM) | 679.52±6.65 | 674.40±8.14 | 0.652 |
乳酸菌 Lactic acid bacteria (Log10 cfu·g-1 FW) | 5.83±0.31 | ND | — |
酵母菌 Yeasts (Log10 cfu·g-1 FW) | 4.29±0.26 | ND | — |
霉菌 Moulds (Log10 cfu·g-1 FW) | 4.15±0.16 | ND | — |
项目 Items | 处理 Treatments | 青贮天数Ensiling days | 标准误 SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 6 d | 15 d | 45 d | 60 d | 90 d | T | D | T×D | |||
pH | CK | 6.23bA | 5.92bAB | 5.71bB | 5.71bB | 5.68bB | 5.59bB | 0.085 | <0.001 | <0.001 | <0.001 |
IRR | 6.67a | 6.64a | 6.68a | 6.69a | 6.68a | 6.69a | |||||
CLAB | 5.30d | 5.26c | 5.15bc | 5.17c | 5.23b | 4.85c | |||||
M6 | 5.77cA | 5.17cB | 4.93cBC | 4.75cC | 4.62cC | 4.66cC | |||||
乳酸 Lactic acid (g·kg-1 DM) | CK | 6.36cB | 7.54cB | 9.81bA | 10.76bA | 7.87cB | 6.96cB | 0.810 | <0.001 | <0.001 | <0.001 |
IRR | 0.06d | 0.05d | ND | ND | ND | 0.02d | |||||
CLAB | 13.28a | 14.60a | 14.51a | 14.10b | 12.51b | 11.90b | |||||
M6 | 9.69bD | 12.63bC | 15.12aC | 17.95aB | 20.31aB | 23.90aA | |||||
乙酸 Acetic acid (g·kg-1 DM) | CK | 2.34aD | 3.19aCD | 3.59aC | 4.18aBC | 5.10aAB | 5.24aA | 0.201 | <0.001 | <0.001 | 0.197 |
IRR | 0.14c | 0.24c | 0.26c | 0.31b | 0.29c | 0.32c | |||||
CLAB | 1.05bB | 1.18bB | 1.92bAB | 3.05aA | 2.85bA | 2.66bA | |||||
M6 | 2.49a | 2.85a | 3.14a | 3.92a | 4.34a | 4.56a | |||||
丙酸 Propionic acid (g·kg-1 DM) | CK | 0.81a | 0.98a | 0.73 | 1.02 | 1.06a | 1.15 | 0.106 | <0.001 | 0.452 | 0.315 |
IRR | ND | 0.08b | 0.04 | ND | ND | ND | |||||
CLAB | 0.19b | ND | ND | ND | 0.01c | ND | |||||
M6 | 0.14b | 0.10b | 0.77 | 0.17 | 0.38b | 0.15 | |||||
丁酸 Butyric acid (g·kg-1 DM) | CK | 0.49bB | 0.71AB | 0.85aAB | 1.04aAB | 1.16aA | 1.18aA | 0.049 | <0.001 | 0.003 | 0.057 |
IRR | ND | ND | 0.03c | 0.02d | ND | 0.02b | |||||
CLAB | 0.47b | 0.50 | 0.51c | 0.57c | 0.49b | 0.53ab | |||||
M6 | 0.73a | 0.68 | 0.87a | 0.79b | 1.19a | 0.83a | |||||
乳酸/乙酸 Lactic acid/acetic acid | CK | 2.79bcAB | 2.38bAB | 2.86bA | 2.63bAB | 1.67bC | 1.58bC | 0.416 | <0.001 | <0.001 | <0.001 |
IRR | 0.55c | 0.66b | - | - | - | 0.31b | |||||
CLAB | 12.64aA | 12.90aA | 8.27aB | 4.63aB | 4.62aB | 5.27aB | |||||
M6 | 3.92b | 4.43b | 4.84ab | 5.24a | 4.71a | 5.26a |
表3 水稻秸秆青贮过程中pH值、有机酸含量和乳酸/乙酸的动态变化
Table 3 Dynamic changes of pH value, organic acid content and lactic acid/acetic acid of rice straw silage
项目 Items | 处理 Treatments | 青贮天数Ensiling days | 标准误 SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 6 d | 15 d | 45 d | 60 d | 90 d | T | D | T×D | |||
pH | CK | 6.23bA | 5.92bAB | 5.71bB | 5.71bB | 5.68bB | 5.59bB | 0.085 | <0.001 | <0.001 | <0.001 |
IRR | 6.67a | 6.64a | 6.68a | 6.69a | 6.68a | 6.69a | |||||
CLAB | 5.30d | 5.26c | 5.15bc | 5.17c | 5.23b | 4.85c | |||||
M6 | 5.77cA | 5.17cB | 4.93cBC | 4.75cC | 4.62cC | 4.66cC | |||||
乳酸 Lactic acid (g·kg-1 DM) | CK | 6.36cB | 7.54cB | 9.81bA | 10.76bA | 7.87cB | 6.96cB | 0.810 | <0.001 | <0.001 | <0.001 |
IRR | 0.06d | 0.05d | ND | ND | ND | 0.02d | |||||
CLAB | 13.28a | 14.60a | 14.51a | 14.10b | 12.51b | 11.90b | |||||
M6 | 9.69bD | 12.63bC | 15.12aC | 17.95aB | 20.31aB | 23.90aA | |||||
乙酸 Acetic acid (g·kg-1 DM) | CK | 2.34aD | 3.19aCD | 3.59aC | 4.18aBC | 5.10aAB | 5.24aA | 0.201 | <0.001 | <0.001 | 0.197 |
IRR | 0.14c | 0.24c | 0.26c | 0.31b | 0.29c | 0.32c | |||||
CLAB | 1.05bB | 1.18bB | 1.92bAB | 3.05aA | 2.85bA | 2.66bA | |||||
M6 | 2.49a | 2.85a | 3.14a | 3.92a | 4.34a | 4.56a | |||||
丙酸 Propionic acid (g·kg-1 DM) | CK | 0.81a | 0.98a | 0.73 | 1.02 | 1.06a | 1.15 | 0.106 | <0.001 | 0.452 | 0.315 |
IRR | ND | 0.08b | 0.04 | ND | ND | ND | |||||
CLAB | 0.19b | ND | ND | ND | 0.01c | ND | |||||
M6 | 0.14b | 0.10b | 0.77 | 0.17 | 0.38b | 0.15 | |||||
丁酸 Butyric acid (g·kg-1 DM) | CK | 0.49bB | 0.71AB | 0.85aAB | 1.04aAB | 1.16aA | 1.18aA | 0.049 | <0.001 | 0.003 | 0.057 |
IRR | ND | ND | 0.03c | 0.02d | ND | 0.02b | |||||
CLAB | 0.47b | 0.50 | 0.51c | 0.57c | 0.49b | 0.53ab | |||||
M6 | 0.73a | 0.68 | 0.87a | 0.79b | 1.19a | 0.83a | |||||
乳酸/乙酸 Lactic acid/acetic acid | CK | 2.79bcAB | 2.38bAB | 2.86bA | 2.63bAB | 1.67bC | 1.58bC | 0.416 | <0.001 | <0.001 | <0.001 |
IRR | 0.55c | 0.66b | - | - | - | 0.31b | |||||
CLAB | 12.64aA | 12.90aA | 8.27aB | 4.63aB | 4.62aB | 5.27aB | |||||
M6 | 3.92b | 4.43b | 4.84ab | 5.24a | 4.71a | 5.26a |
处理 Treatments | 乳酸得分 Lactic acid score | 乙酸得分 Acetic acid score | 丁酸得分 Butyric acid score | 总分 Total score | 等级 Grade |
---|---|---|---|---|---|
CK | 12 | 10 | 10 | 32 | 中Middle |
CLAB | 30 | 19 | 20 | 69 | 良 Good |
M6 | 30 | 19 | 30 | 79 | 良Good |
表4 青贮90 d水稻秸秆发酵品质费氏评分
Table 4 The Flieg score of fermentation quality of 90 days rice straw silage
处理 Treatments | 乳酸得分 Lactic acid score | 乙酸得分 Acetic acid score | 丁酸得分 Butyric acid score | 总分 Total score | 等级 Grade |
---|---|---|---|---|---|
CK | 12 | 10 | 10 | 32 | 中Middle |
CLAB | 30 | 19 | 20 | 69 | 良 Good |
M6 | 30 | 19 | 30 | 79 | 良Good |
项目 Items | 处理 Treatments | 青贮天数Ensiling days | 标准误 SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 6 d | 15 d | 45 d | 60 d | 90 d | T | D | T×D | |||
中性洗涤纤维 Neutral detergent fiber | CK | 677.61 | 674.80a | 667.84a | 659.96a | 660.64a | 659.35a | 2.857 | <0.001 | <0.001 | 0.031 |
IRR | 667.49 | 666.54ab | 666.65a | 664.43a | 664.97a | 664.06a | |||||
CLAB | 663.88A | 660.31abA | 654.63abAB | 644.63abBC | 638.92abC | 634.92aC | |||||
M6 | 655.21A | 646.83bAB | 633.07bB | 616.73bC | 602.41bCD | 590.15bD | |||||
酸性洗涤纤维 Acid detergent fiber | CK | 425.32a | 425.85 | 423.63a | 418.29a | 419.86a | 418.37a | 1.841 | <0.001 | <0.001 | 0.074 |
IRR | 416.29ab | 416.28 | 415.82ab | 414.33a | 413.11a | 413.36a | |||||
CLAB | 405.63bA | 405.08A | 403.64bcA | 398.54cAB | 394.27bAB | 391.76bB | |||||
M6 | 405.33bA | 401.16AB | 393.68cBC | 386.45dCD | 376.26cDE | 372.63cE | |||||
酸性洗涤木质素 Acid detergent lignin | CK | 59.71 | 60.57 | 60.02 | 60.01a | 59.58 | 59.09 | 0.267 | <0.001 | 0.474 | 0.686 |
IRR | 58.95 | 58.87 | 58.61 | 58.82ab | 58.93 | 58.86 | |||||
CLAB | 59.45 | 59.54 | 58.03 | 58.13ab | 58.71 | 59.46 | |||||
M6 | 58.55A | 57.08A | 58.30AB | 56.48bAB | 54.51B | 54.02B | |||||
纤维素 Cellulose | CK | 365.61a | 365.28 | 363.62a | 358.29a | 360.28a | 359.28a | 1.700 | <0.001 | <0.001 | 0.211 |
IRR | 357.34ab | 357.41 | 357.20ab | 355.52a | 354.18a | 354.51a | |||||
CLAB | 346.18bA | 345.54A | 345.61bcA | 340.41bAB | 335.56bAB | 332.30bB | |||||
M6 | 346.78bA | 344.08A | 335.37cAB | 329.97cBC | 321.76bC | 318.61cC | |||||
半纤维素 Hemicellulose | CK | 252.29 | 248.95 | 244.21 | 241.66 | 240.78 | 240.98a | 1.780 | 0.006 | 0.120 | 0.976 |
IRR | 251.19 | 250.26 | 250.83 | 250.10 | 251.87 | 250.69ab | |||||
CLAB | 258.25 | 255.23 | 251.00 | 246.09 | 244.65 | 243.17ab | |||||
M6 | 249.88A | 245.67AB | 239.40ABC | 230.28BCD | 226.14CD | 217.52bD |
表5 水稻秸秆青贮过程中结构性碳水化合物组分变化
Table 5 Changes in structural carbohydrates components of rice straw silage (g·kg-1 DM)
项目 Items | 处理 Treatments | 青贮天数Ensiling days | 标准误 SEM | P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 d | 6 d | 15 d | 45 d | 60 d | 90 d | T | D | T×D | |||
中性洗涤纤维 Neutral detergent fiber | CK | 677.61 | 674.80a | 667.84a | 659.96a | 660.64a | 659.35a | 2.857 | <0.001 | <0.001 | 0.031 |
IRR | 667.49 | 666.54ab | 666.65a | 664.43a | 664.97a | 664.06a | |||||
CLAB | 663.88A | 660.31abA | 654.63abAB | 644.63abBC | 638.92abC | 634.92aC | |||||
M6 | 655.21A | 646.83bAB | 633.07bB | 616.73bC | 602.41bCD | 590.15bD | |||||
酸性洗涤纤维 Acid detergent fiber | CK | 425.32a | 425.85 | 423.63a | 418.29a | 419.86a | 418.37a | 1.841 | <0.001 | <0.001 | 0.074 |
IRR | 416.29ab | 416.28 | 415.82ab | 414.33a | 413.11a | 413.36a | |||||
CLAB | 405.63bA | 405.08A | 403.64bcA | 398.54cAB | 394.27bAB | 391.76bB | |||||
M6 | 405.33bA | 401.16AB | 393.68cBC | 386.45dCD | 376.26cDE | 372.63cE | |||||
酸性洗涤木质素 Acid detergent lignin | CK | 59.71 | 60.57 | 60.02 | 60.01a | 59.58 | 59.09 | 0.267 | <0.001 | 0.474 | 0.686 |
IRR | 58.95 | 58.87 | 58.61 | 58.82ab | 58.93 | 58.86 | |||||
CLAB | 59.45 | 59.54 | 58.03 | 58.13ab | 58.71 | 59.46 | |||||
M6 | 58.55A | 57.08A | 58.30AB | 56.48bAB | 54.51B | 54.02B | |||||
纤维素 Cellulose | CK | 365.61a | 365.28 | 363.62a | 358.29a | 360.28a | 359.28a | 1.700 | <0.001 | <0.001 | 0.211 |
IRR | 357.34ab | 357.41 | 357.20ab | 355.52a | 354.18a | 354.51a | |||||
CLAB | 346.18bA | 345.54A | 345.61bcA | 340.41bAB | 335.56bAB | 332.30bB | |||||
M6 | 346.78bA | 344.08A | 335.37cAB | 329.97cBC | 321.76bC | 318.61cC | |||||
半纤维素 Hemicellulose | CK | 252.29 | 248.95 | 244.21 | 241.66 | 240.78 | 240.98a | 1.780 | 0.006 | 0.120 | 0.976 |
IRR | 251.19 | 250.26 | 250.83 | 250.10 | 251.87 | 250.69ab | |||||
CLAB | 258.25 | 255.23 | 251.00 | 246.09 | 244.65 | 243.17ab | |||||
M6 | 249.88A | 245.67AB | 239.40ABC | 230.28BCD | 226.14CD | 217.52bD |
图 3 水稻秸秆青贮过程中水溶性碳水化合物,蔗糖,果糖,纤维二糖,木糖和葡萄糖的变化水溶性碳水化合物,蔗糖,果糖,纤维二糖,木糖和葡萄糖的标准误分别为3.137,0.213,0.146,0.029,0.016和0.015。每个处理,青贮时间和交互作用的P<0.001。The standard error of the mean for the WSC, sucrose, fructose and glucose were 3.137, 0.213, 0.146, 0.029, 0.016 and 0.015, respectively. Treatment, ensiling days and their interaction were significant at P<0.001.
Fig. 3 Dynamic changes of residual water-soluble carbohydrates, sucrose, fructose, cellobiose, xylose, and glucose of rice straw silage
1 | Colombatto D, Mould F L, Bhat M K, et al. In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage:Ⅱ. Effects on rate of acidification, fibre degradation during ensiling and rumen fermentation. Animal Feed Science and Technology, 2003, 111(1): 129-143. |
2 | Huang Q L, Zhong Z M, Huang X S, et al. Screening of cellulose-degrading bacteria and evaluation of silage performance of Pennisetum. Acta Prataculturae Sinica, 2016, 25(4): 197-203. |
黄勤楼, 钟珍梅, 黄秀声, 等. 纤维素降解菌的筛选及在狼尾草青贮中使用效果评价. 草业学报, 2016, 25(4): 197-203. | |
3 | Zhong Y T, Li W Z, Zheng G X, et al. Screening of rice straw degradation microbial system and its growth characteristics. Journal of Northeast Agricultural University, 2011, 42(8): 56-61. |
种玉婷, 李文哲, 郑国香, 等. 稻秆降解复合菌系的筛选及其生长特性的研究. 东北农业大学学报, 2011, 42(8): 56-61. | |
4 | Wen B T, Yuan X F, Li Q X, et al. Comparison and evaluation of concurrent saccharification and anaerobic digestion of napier grass after pretreatment by three microbial consortia. Bioresource Technology, 2015, 175: 102-111. |
5 | Tuesorn S, Wongwilaiwalin S, Champreda V, et al. Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresource Technology, 2013, 144: 579-586. |
6 | Thet N, Takumi S, Makoto M. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS Microbiology Ecology, 2014, 88(3): 528-537. |
7 | Xu X Q, Xu Z Q, Shi S, et al. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresource Technology, 2017, 241: 415-423. |
8 | Ren H W, Sun W L, Yan Z H, et al. Bioaugmentation of sweet sorghum ensiling with rumen fluid: Fermentation characteristics, chemical composition, microbial community, and enzymatic digestibility of silages. Journal of Cleaner Production, 2021, 294: 126308. |
9 | Zhao J, Shao T, Chen S, et al. Characterization and identification of cellulase-producing Enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages. Journal of Applied Microbiology, 2021, 131: 1102-1112. |
10 | Wongwilaiwalin S, Laothanachareon T, Mhuantong W, et al. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Applied Microbiology and Biotechnology, 2013, 97(20): 8941-8954. |
11 | Jia H, Chen X R, Lu G X, et al. Isolation of cellulose-degrading bacteria and determination of their degradation activity. Acta Prataculturae Sinica, 2016, 25(3): 60-66. |
贾辉, 陈秀蓉, 芦光新, 等. 纤维素降解细菌的筛选、生物学特性及降解效果. 草业学报, 2016, 25(3): 60-66. | |
12 | Yang L L, Yuan X J, Li J F, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology, 2019, 275: 280-287. |
13 | Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry, 1959, 31(3): 426-428. |
14 | Luo C B, Li Y Q, Chen Y, et al. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnology for Biofuels, 2019, 12(1): 70. |
15 | Chen G J, Wu J H, Shang Y S, et al. Dynamic effects of exogenous fibrolytic enzyme supplementation on nutritive value, fermentation quality and enzyme activities of fermentation total mixed ration. Acta Prataculturae Sinica, 2019, 28(9): 123-134. |
陈光吉, 吴佳海, 尚以顺, 等. 外源纤维素酶对发酵全混合日粮营养价值、发酵品质和酶活性的动态影响. 草业学报, 2019, 28(9): 123-134. | |
16 | Wang S R, Sun Y, Zhao J, et al. Assessment of inoculating various epiphytic microbiota on fermentative profile and microbial community dynamics in sterile Italian ryegrass. Journal of Applied Microbiology, 2020, 129(3): 509-520. |
17 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
18 | Zong C, Zhang J, Shao T, et al. Effects of additives on fermentation quality of alfalfa silage. Acta Prataculturae Sinica, 2020, 29(12): 180-187. |
宗成, 张健, 邵涛, 等. 添加剂对紫花苜蓿青贮饲料发酵品质的影响. 草业学报, 2020, 29(12): 180-187. | |
19 | Wang X N, Sun Q Z, Han H B, et al. The quality of silage in Inner Mongolia. Acta Prataculturae Sinica, 2011, 20(3): 149-155. |
王晓娜, 孙启忠, 韩海波, 等. 内蒙古青贮饲料质量研究. 草业学报, 2011, 20(3): 149-155. | |
20 | Liu Q H, Li X Y, Li J F, et al. Effect of temperature and additives on fermentation and α-tocopherol and β-carotene content of Pennisetum purpureum silage. Acta Prataculturae Sinica, 2015, 24(7): 116-122. |
刘秦华, 李湘玉, 李君风, 等. 温度和添加剂对象草青贮发酵品质、α-生育酚和β-胡萝卜素的影响. 草业学报, 2015, 24(7): 116-122. | |
21 | Dong Z H, Yuan X J, Wen A Y, et al. Effect of lactic acid bacteria and fermentation substrates on the quality of mulberry (Morus alba) leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. |
董志浩, 原现军, 闻爱友, 等. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174. | |
22 | Pang J, Wang J S, Liu Z Y, et al. Identification and characterization of an endo-glucanase secreted from cellulolytic Escherichia coli ZH-4. BMC Biotechnology, 2019, 19(1): 620-625. |
23 | McKenna D D, Scully E D, Pauchet Y, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biology, 2016, 17(1): 1-18. |
24 | Xu Z, Zhang S, Zhang R, et al. The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling. Journal of Applied Microbiology, 2018, 125(3): 675-685. |
25 | Zhang J. Study of VOCs and structural changes in rice straw degradation by co-culturing of three fungi. Changsha: Hunan University, 2016. |
张洁. 真菌混合降解稻草过程中VOCs及稻草结构变化的研究. 长沙: 湖南大学, 2016. | |
26 | Marhaba A. Study on isolation and identification of cellulose-degrading bacteria from rumen and its application on silage. Urumchi: Xinjiang University, 2013. |
买尔哈巴·艾合买提. 瘤胃中纤维素分解菌的分离、鉴定及其在青贮饲料中的应用研究. 乌鲁木齐: 新疆大学, 2013. | |
27 | Castro C, Cleenwerck I, Trcek J, et al. Gluconacetobacter medellinensis sp. nov. cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 1119-1125. |
28 | Shi W. Studies on screening of cellulase high producing bacteria and applying to silage. Xi’an: Northwest University, 2008. |
石伟. 高产纤维素酶菌株的筛选及其在青贮饲料中的应用研究. 西安: 西北大学, 2008. | |
29 | Li J F, Yuan X J, Dong Z H, et al. Isolation and identification of facultatively anaerobic cellulolytic bacterium in the rumen of Tibetan yaks (Bos grunniens). Acta Prataculturae Sinica, 2017, 26(6): 176-184. |
李君风, 原现军, 董志浩, 等. 西藏地区牦牛瘤胃中兼性厌氧纤维素降解菌的分离鉴定. 草业学报, 2017, 26(6): 176-184. | |
30 | Li J F, Yuan X J, Dong Z H, et al. The effects of fibrolytic enzymes, cellulolytic fungi and bacteria on the fermentation characteristics, structural carbohydrates degradation, and enzymatic conversion yields of Pennisetum sinese silage. Bioresource Technology, 2018, 264: 123-130. |
31 | Ding J, Jia Y H, Chen X L, et al. Effect of cellulase on the production of sugar and organic acids of corn silage. Feed Industry, 2002, 23(9): 10-11. |
丁健, 贾亚红, 陈小莲, 等. 纤维素酶对玉米青贮饲料糖和有机酸生成量的影响. 饲料工业, 2002, 23(9): 10-11. | |
32 | Zhao J, Dong Z H, Li J F, et al. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresource Technology, 2018, 266: 158-165. |
33 | Li J F, Yuan X J, Desta S T, et al. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresource Technology, 2018, 257: 76-83. |
[1] | 郭香, 吴硕, 郑明扬, 陈德奎, 邹璇, 陈晓阳, 周玮, 张庆. 添加黄梁木叶和壳寡糖对甘蔗梢青贮饲料发酵品质及有氧稳定性的影响[J]. 草业学报, 2022, 31(6): 202-210. |
[2] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[3] | 杨冬梅, 李俊年, 陶双伦. 添加单宁酸对青贮葛藤有氧稳定性和霉菌毒素含量的影响[J]. 草业学报, 2021, 30(8): 164-170. |
[4] | 郭香, 陈德奎, 陈娜, 李云, 陈晓阳, 张庆. 含水量和添加剂对黄梁木叶青贮发酵品质的影响[J]. 草业学报, 2021, 30(8): 199-205. |
[5] | 尹祥, 王咏琪, 李鑫琴, 田静, 王晓亚, 张建国. 不同水分吸附材料对象草青贮发酵品质及好氧稳定性的影响[J]. 草业学报, 2021, 30(7): 133-138. |
[6] | 付东青, 贾春英, 连晓春, 张力, 张凡凡, 马春晖. 玉米秸秆与番茄皮渣裹包混贮发酵品质及瘤胃降解特征研究[J]. 草业学报, 2021, 30(10): 147-158. |
[7] | 吴长荣, 代胜, 梁龙飞, 孙文涛, 彭超, 陈超, 郝俊. 不同添加剂对构树青贮饲料发酵品质和蛋白质降解的影响[J]. 草业学报, 2021, 30(10): 169-179. |
[8] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[9] | 张帆, 杨茜. 紫云英与双季稻秸秆协同利用影响稻田土壤钾循环与平衡[J]. 草业学报, 2021, 30(1): 72-80. |
[10] | 董文成, 林语梵, 朱鸿福, 张欢, 张桂杰. 不同品种葡萄渣对苜蓿青贮品质和有氧稳定性的影响[J]. 草业学报, 2020, 29(4): 129-137. |
[11] | 李艳芬, 程金花, 田川尧, 田雨佳, 卢冬亚, 张建斌. 双乙酸钠对苜蓿青贮品质、营养成分及蛋白分子结构的影响[J]. 草业学报, 2020, 29(2): 163-171. |
[12] | 宗成, 张健, 邵涛, 董志浩, 李君风, 唐露, 冉启凡, 刘秦华. 添加剂对紫花苜蓿青贮饲料发酵品质的影响[J]. 草业学报, 2020, 29(12): 180-187. |
[13] | 毛翠, 刘方圆, 宋恩亮, 王亚芳, 王永军, 战翔, 李原, 成海建, 姜富贵. 不同乳酸菌添加量和发酵时间对全株玉米青贮营养价值及发酵品质的影响[J]. 草业学报, 2020, 29(10): 172-181. |
[14] | 琚泽亮, 赵桂琴, 柴继宽, 贾志峰, 梁国玲. 不同燕麦品种在甘肃中部的营养价值及青贮发酵品质综合评价[J]. 草业学报, 2019, 28(9): 77-86. |
[15] | 李小铃, 关皓, 帅杨, 李小梅, 彭安琪, 李昌华, 蒲棋, 闫艳红, 张新全. 单一和复合乳酸菌添加剂对扁穗牛鞭草青贮品质的影响[J]. 草业学报, 2019, 28(6): 119-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||