草业学报 ›› 2024, Vol. 33 ›› Issue (5): 25-40.DOI: 10.11686/cyxb2023301
宁建凤(), 李彤, 曾瑞锟, 姚建武(), 陈勇, 梁紫薇
收稿日期:
2023-08-29
修回日期:
2023-10-09
出版日期:
2024-05-20
发布日期:
2024-02-03
通讯作者:
宁建凤,姚建武
作者简介:
yaojianwu@gdaas.cn基金资助:
Jian-feng NING(), Tong LI, Rui-kun ZENG, Jian-wu YAO(), Yong CHEN, Zi-wei LIANG
Received:
2023-08-29
Revised:
2023-10-09
Online:
2024-05-20
Published:
2024-02-03
Contact:
Jian-feng NING,Jian-wu YAO
摘要:
赤红壤是广东省地带性土壤,研究位于该地带性土壤的菜地肥力变化特征,以客观评价耕作施肥管理的科学性,助力耕地质量保护与提升。在广东省珠三角地区广州市、江门市、肇庆市、惠州市惠阳区选取了89个蔬菜常年种植菜地,测定了耕层(0~20 cm)土壤理化指标,利用第二次全国土壤普查养分分级标准和内梅罗综合指数法分析评价土壤肥力状况。珠三角赤红壤常年菜地土壤质地以壤土、砂质壤土、粉壤土为主,分别占比46.1%、23.6%和19.1%;pH 5.83,呈微酸性;有机质含量23.83 g·kg-1,为中等水平;阳离子交换量8.67 cmol(+)·kg-1,为中等偏下水平;全氮(N)、全磷(P)、全钾(K)含量分别为1.19、1.47、12.53 g·kg-1,其中全氮和全磷含量均属中等水平,全钾含量为中等偏下水平;有效态养分中碱解氮、有效磷、速效钾含量分别为135.24、120.24、222.48 mg·kg-1,属于丰富(碱解氮和速效钾)和极丰富水平(有效磷)。内梅罗综合指数法评价结果显示,珠三角赤红壤常年菜地土壤综合肥力指数为1.69,属良好等级。相比第二次全国土壤普查广东省赤红壤普查结果,土壤全钾含量不同程度降低,pH值、有机质、全氮、碱解氮含量均不同程度提高,增幅分别为16.6%、23.5%、38.4%和62.5%;阳离子交换量、全磷、有效磷和速效钾含量大幅增加,增幅分别达1.29、6.00、65.80和3.07倍,其中土壤有效磷累积较为普遍。全氮和全磷的年均累积量分别为8.46、32.31 mg·kg-1,碱解氮、有效磷和速效钾年均累积量分别为1.20、3.04、4.30 mg·kg-1。总体上,经过近40年耕种,珠三角赤红壤常年菜地肥力水平不同程度改善,土壤pH由酸性改善为微酸性,阳离子交换性能、有机质、全氮含量提升1个等级,碱解氮和有效钾含量提升2个等级,全磷和有效磷含量分别提升3和5个等级。各肥力指标总体上由原来的极度缺乏至中等偏下状态改善为目前的中等偏下至极丰富水平,总体肥力状况良好。在实施蔬菜有机无机肥配施技术基础上,合理施用氮、钾肥,降低磷肥投入量,可以进一步提升珠三角赤红壤区菜地地力水平,维持土壤资源的可持续利用。
宁建凤, 李彤, 曾瑞锟, 姚建武, 陈勇, 梁紫薇. 珠三角赤红壤常年菜地土壤肥力质量评价[J]. 草业学报, 2024, 33(5): 25-40.
Jian-feng NING, Tong LI, Rui-kun ZENG, Jian-wu YAO, Yong CHEN, Zi-wei LIANG. Soil fertility in perennial vegetable fields in the latosolic red soil zone of the Pearl River Delta[J]. Acta Prataculturae Sinica, 2024, 33(5): 25-40.
采样位置 Sampling sites | 数量 Numbers (No.) | 采样位置 Sampling sites | 数量 Numbers (No.) |
---|---|---|---|
广州市白云区人和镇Renhe Town, Baiyun District, Guangzhou City | 1 | 肇庆市高要区白诸镇Baizhu Town, Gaoyao District, Zhaoqing City | 2 |
广州市白云区江高镇Jianggao Town, Baiyun District, Guangzhou City | 7 | 肇庆市高要区蚬岗镇Xiangang Town, Gaoyao District, Zhaoqing City | 2 |
广州市白云区钟落潭镇Zhongluotan Town, Baiyun District, Guangzhou City | 10 | 肇庆市四会市地豆镇Didou Town, Sihui county-level city, Zhaoqing City | 5 |
广州市天河区五山街道Wushan Street, Tianhe District, Guangzhou City | 1 | 江门市新会区会城街道Huicheng Street, Xinhui District, Jiangmen City | 1 |
广州市从化区太平镇Taiping Town, Conghua District, Guangzhou City | 1 | 江门市台山市冲蒌镇Chonglou Town, Taishan county-level city, Jiangmen City | 2 |
广州市番禺区石基镇 Shiji Town, Panyu District, Guangzhou City | 1 | 江门市台山市台城街道Taicheng Street, Taishan county-level city, Jiangmen City | 2 |
广州市花都区赤坭镇Chini Town, Huadu District, Guangzhou City | 2 | 江门市台山市水步镇Shuibu Town, Taishan county-level city, Jiangmen City | 1 |
广州市花都区花山镇Huashan Town, Huadu District, Guangzhou City | 1 | 江门市台山市四九镇Sijiu Town, Taishan county-level city, Jiangmen City | 1 |
广州市花都区狮岭镇Shiling Town, Huadu District, Guangzhou City | 1 | 江门市鹤山市雅瑶镇Yayao Town, Heshan county-level city, Jiangmen City | 2 |
广州市黄埔区九龙镇Jiulong Town, Huangpu District, Guangzhou City | 1 | 江门市鹤山市古劳镇Gulao Town, Heshan county-level city, Jiangmen City | 1 |
广州市南沙区横沥镇Hengli Town, Nansha District, Guangzhou City | 1 | 江门市鹤山市桃源镇Taoyuan Town, Heshan county-level city, Jiangmen City | 1 |
广州市增城区石滩镇Shitan Town, Zengcheng District, Guangzhou City | 2 | 江门市恩平市恩成街道Encheng Street, Enping county-level city, Jiangmen City | 1 |
广州市增城区派潭镇Paitan Town, Zengcheng District, Guangzhou City | 1 | 江门市恩平市东成镇Dongcheng Town, Enping county-level city, Jiangmen City | 2 |
肇庆市新湖区凤凰镇Fenghuang Town, Xinhu District, Zhaoqing City | 1 | 江门市开平市沙塘镇Shatang Town, Kaiping county-level city, Jiangmen City | 1 |
肇庆市封开县江川镇Jiangchuan Town, Fengkai County, Zhaoqing City | 2 | 江门市开平市水口镇Shuikou Town, Kaiping county-level city, Jiangmen City | 2 |
肇庆市广宁县南街镇Nanjie Town, Guangning County, Zhaoqing City | 2 | 江门市开平市塘口镇Tangkou Town, Kaiping county-level city, Jiangmen City | 1 |
肇庆市广宁县宾亨镇Binheng Town, Guangning County, Zhaoqing City | 1 | 惠州市惠阳区平潭镇Pingtan Town, Huiyang District, Huizhou City | 7 |
肇庆市怀集县冷坑镇Lengkeng Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区沙田镇Shatian Town, Huiyang District, Huizhou City | 3 |
肇庆市怀集县梁村镇Liangcun Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区永湖镇Yonghu Town, Huiyang District, Huizhou City | 1 |
肇庆市怀集县岗坪镇Gangping Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区秋长镇Qiuchang Town, Huiyang District, Huizhou City | 3 |
肇庆市德庆县回龙镇Huilong Town, Deqing County, Zhaoqing City | 1 | 惠州市惠阳区良井镇Liangjing Town, Huiyang District, Huizhou City | 4 |
肇庆市德庆县官圩镇Guanxu Town, Deqing County, Zhaoqing City | 1 | 惠州市惠阳区楼角镇Loujiao Town, Huiyang District, Huizhou City | 1 |
肇庆市高要区回龙镇Huilong Town, Gaoyao District, Zhaoqing City | 2 |
表1 珠三角赤红壤常年菜地采样点位置
Table 1 Location of sampling sites of soil in the perennial vegetable fields of the Pearl River Delta in latosolic red soil zone
采样位置 Sampling sites | 数量 Numbers (No.) | 采样位置 Sampling sites | 数量 Numbers (No.) |
---|---|---|---|
广州市白云区人和镇Renhe Town, Baiyun District, Guangzhou City | 1 | 肇庆市高要区白诸镇Baizhu Town, Gaoyao District, Zhaoqing City | 2 |
广州市白云区江高镇Jianggao Town, Baiyun District, Guangzhou City | 7 | 肇庆市高要区蚬岗镇Xiangang Town, Gaoyao District, Zhaoqing City | 2 |
广州市白云区钟落潭镇Zhongluotan Town, Baiyun District, Guangzhou City | 10 | 肇庆市四会市地豆镇Didou Town, Sihui county-level city, Zhaoqing City | 5 |
广州市天河区五山街道Wushan Street, Tianhe District, Guangzhou City | 1 | 江门市新会区会城街道Huicheng Street, Xinhui District, Jiangmen City | 1 |
广州市从化区太平镇Taiping Town, Conghua District, Guangzhou City | 1 | 江门市台山市冲蒌镇Chonglou Town, Taishan county-level city, Jiangmen City | 2 |
广州市番禺区石基镇 Shiji Town, Panyu District, Guangzhou City | 1 | 江门市台山市台城街道Taicheng Street, Taishan county-level city, Jiangmen City | 2 |
广州市花都区赤坭镇Chini Town, Huadu District, Guangzhou City | 2 | 江门市台山市水步镇Shuibu Town, Taishan county-level city, Jiangmen City | 1 |
广州市花都区花山镇Huashan Town, Huadu District, Guangzhou City | 1 | 江门市台山市四九镇Sijiu Town, Taishan county-level city, Jiangmen City | 1 |
广州市花都区狮岭镇Shiling Town, Huadu District, Guangzhou City | 1 | 江门市鹤山市雅瑶镇Yayao Town, Heshan county-level city, Jiangmen City | 2 |
广州市黄埔区九龙镇Jiulong Town, Huangpu District, Guangzhou City | 1 | 江门市鹤山市古劳镇Gulao Town, Heshan county-level city, Jiangmen City | 1 |
广州市南沙区横沥镇Hengli Town, Nansha District, Guangzhou City | 1 | 江门市鹤山市桃源镇Taoyuan Town, Heshan county-level city, Jiangmen City | 1 |
广州市增城区石滩镇Shitan Town, Zengcheng District, Guangzhou City | 2 | 江门市恩平市恩成街道Encheng Street, Enping county-level city, Jiangmen City | 1 |
广州市增城区派潭镇Paitan Town, Zengcheng District, Guangzhou City | 1 | 江门市恩平市东成镇Dongcheng Town, Enping county-level city, Jiangmen City | 2 |
肇庆市新湖区凤凰镇Fenghuang Town, Xinhu District, Zhaoqing City | 1 | 江门市开平市沙塘镇Shatang Town, Kaiping county-level city, Jiangmen City | 1 |
肇庆市封开县江川镇Jiangchuan Town, Fengkai County, Zhaoqing City | 2 | 江门市开平市水口镇Shuikou Town, Kaiping county-level city, Jiangmen City | 2 |
肇庆市广宁县南街镇Nanjie Town, Guangning County, Zhaoqing City | 2 | 江门市开平市塘口镇Tangkou Town, Kaiping county-level city, Jiangmen City | 1 |
肇庆市广宁县宾亨镇Binheng Town, Guangning County, Zhaoqing City | 1 | 惠州市惠阳区平潭镇Pingtan Town, Huiyang District, Huizhou City | 7 |
肇庆市怀集县冷坑镇Lengkeng Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区沙田镇Shatian Town, Huiyang District, Huizhou City | 3 |
肇庆市怀集县梁村镇Liangcun Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区永湖镇Yonghu Town, Huiyang District, Huizhou City | 1 |
肇庆市怀集县岗坪镇Gangping Town, Huaiji County, Zhaoqing City | 1 | 惠州市惠阳区秋长镇Qiuchang Town, Huiyang District, Huizhou City | 3 |
肇庆市德庆县回龙镇Huilong Town, Deqing County, Zhaoqing City | 1 | 惠州市惠阳区良井镇Liangjing Town, Huiyang District, Huizhou City | 4 |
肇庆市德庆县官圩镇Guanxu Town, Deqing County, Zhaoqing City | 1 | 惠州市惠阳区楼角镇Loujiao Town, Huiyang District, Huizhou City | 1 |
肇庆市高要区回龙镇Huilong Town, Gaoyao District, Zhaoqing City | 2 |
分级 Grade | 评价 Evaluation | 指标Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
OM (g·kg-1) | CEC [cmol(+)·kg-1] | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) | ||
一级One-level | 极丰富Extremely rich | >40 | >20.0 | >2.00 | >2.0 | >30 | >150 | >40 | >200 |
二级Two-level | 丰富Rich | 30~40 | 15.4~20.0 | 1.50~2.00 | 1.5~2.0 | 20~30 | 120~150 | 20~40 | 150~200 |
三级Three-level | 中等Medium | 20~30 | 10.5~15.4 | 1.00~1.50 | 1.0~1.5 | 15~20 | 90~120 | 10~20 | 100~150 |
四级Four-level | 中等偏下Medium low | 10~20 | 6.2~10.5 | 0.75~1.00 | 0.7~1.0 | 10~15 | 60~90 | 5~10 | 50~100 |
五级Five-level | 缺少Insufficient | 6~10 | <6.2 | 0.50~0.75 | 0.4~0.7 | 5~10 | 30~60 | 3~5 | 30~50 |
六级Six-level | 极缺Extremely insufficient | <6 | - | <0.50 | <0.4 | <5 | <30 | <3 | <30 |
表2 土壤指标分级评价标准
Table 2 Standards of grade evaluation on soil parameters
分级 Grade | 评价 Evaluation | 指标Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
OM (g·kg-1) | CEC [cmol(+)·kg-1] | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) | ||
一级One-level | 极丰富Extremely rich | >40 | >20.0 | >2.00 | >2.0 | >30 | >150 | >40 | >200 |
二级Two-level | 丰富Rich | 30~40 | 15.4~20.0 | 1.50~2.00 | 1.5~2.0 | 20~30 | 120~150 | 20~40 | 150~200 |
三级Three-level | 中等Medium | 20~30 | 10.5~15.4 | 1.00~1.50 | 1.0~1.5 | 15~20 | 90~120 | 10~20 | 100~150 |
四级Four-level | 中等偏下Medium low | 10~20 | 6.2~10.5 | 0.75~1.00 | 0.7~1.0 | 10~15 | 60~90 | 5~10 | 50~100 |
五级Five-level | 缺少Insufficient | 6~10 | <6.2 | 0.50~0.75 | 0.4~0.7 | 5~10 | 30~60 | 3~5 | 30~50 |
六级Six-level | 极缺Extremely insufficient | <6 | - | <0.50 | <0.4 | <5 | <30 | <3 | <30 |
项目Item | 一级One-level | 二级Two-level | 三级Three-level | 四级Four-level | 五级Five-level | 六级Six-level |
---|---|---|---|---|---|---|
pH | <4.5 | 4.5~5.5 | 5.5~6.5 | 6.5~7.5 | 7.5~8.5 | 8.5~9.5 |
评价Evaluation | 强酸性Strong acidic | 酸性Acidic | 微酸性Slightly acidic | 中性Neutral | 弱碱性Slightly basic | 碱性Basic |
表3 土壤pH分级评价标准
Table 3 Standards of grade evaluation on soil pH
项目Item | 一级One-level | 二级Two-level | 三级Three-level | 四级Four-level | 五级Five-level | 六级Six-level |
---|---|---|---|---|---|---|
pH | <4.5 | 4.5~5.5 | 5.5~6.5 | 6.5~7.5 | 7.5~8.5 | 8.5~9.5 |
评价Evaluation | 强酸性Strong acidic | 酸性Acidic | 微酸性Slightly acidic | 中性Neutral | 弱碱性Slightly basic | 碱性Basic |
土壤指标Soil parameters | 土壤指标Soil parameters | ||||||
---|---|---|---|---|---|---|---|
pH (pH≤7.5) | 4.5 | 5.5 | 6.5 | TK (g·kg-1) | 2 | 5 | 10 |
OM (g·kg-1) | 10 | 20 | 30 | AN (mg·kg-1) | 60 | 120 | 180 |
CEC [cmol(+)·kg-1] | 5 | 10 | 15 | AP (mg·kg-1) | 10 | 20 | 40 |
TN (g·kg-1) | 0.75 | 1.50 | 2.00 | AK (mg·kg-1) | 50 | 100 | 200 |
TP (g·kg-1) | 0.2 | 0.4 | 0.6 |
表4 内梅罗评定法土壤各指标分级标准
Table 4 Grade standards of soil parameters in the Nemorrow method
土壤指标Soil parameters | 土壤指标Soil parameters | ||||||
---|---|---|---|---|---|---|---|
pH (pH≤7.5) | 4.5 | 5.5 | 6.5 | TK (g·kg-1) | 2 | 5 | 10 |
OM (g·kg-1) | 10 | 20 | 30 | AN (mg·kg-1) | 60 | 120 | 180 |
CEC [cmol(+)·kg-1] | 5 | 10 | 15 | AP (mg·kg-1) | 10 | 20 | 40 |
TN (g·kg-1) | 0.75 | 1.50 | 2.00 | AK (mg·kg-1) | 50 | 100 | 200 |
TP (g·kg-1) | 0.2 | 0.4 | 0.6 |
肥力等级Fertility grade | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
---|---|---|---|---|
综合肥力指数范围Range of integrated fertility index (F) | F≥2.0 | 1.5≤F<2.0 | 1.0≤F<1.5 | F<1.0 |
肥力评价Fertility evaluation | 优Excellent | 良Good | 中Medium | 差Inferior |
表5 土壤肥力等级标准
Table 5 Soil fertility grade standards
肥力等级Fertility grade | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
---|---|---|---|---|
综合肥力指数范围Range of integrated fertility index (F) | F≥2.0 | 1.5≤F<2.0 | 1.0≤F<1.5 | F<1.0 |
肥力评价Fertility evaluation | 优Excellent | 良Good | 中Medium | 差Inferior |
指标 Parameters | 均值 Average | 范围 Range | 标准偏差 Standard deviations (S.D.) | 变异系数 Coefficient variation (%) | 相比“二普”结果变化 Changes based on The Second National Soil Survey |
---|---|---|---|---|---|
pH | 5.83 | 4.37~7.23 | 0.65 | 11.17 | +16.6% |
OM (g·kg-1) | 23.83 | 7.79~56.59 | 10.00 | 41.98 | +23.5% |
CEC [cmol(+)·kg-1] | 8.67 | 3.46~20.09 | 3.49 | 40.20 | +129.0% |
表6 土壤pH、有机质含量和阳离子交换量
Table 6 Soil pH, organic matter content and the cation exchange capacity
指标 Parameters | 均值 Average | 范围 Range | 标准偏差 Standard deviations (S.D.) | 变异系数 Coefficient variation (%) | 相比“二普”结果变化 Changes based on The Second National Soil Survey |
---|---|---|---|---|---|
pH | 5.83 | 4.37~7.23 | 0.65 | 11.17 | +16.6% |
OM (g·kg-1) | 23.83 | 7.79~56.59 | 10.00 | 41.98 | +23.5% |
CEC [cmol(+)·kg-1] | 8.67 | 3.46~20.09 | 3.49 | 40.20 | +129.0% |
指标 Parameters | 单项肥力指数 Single fertility index | 综合肥力指数Integrated fertility index (F) | 评价 Evaluation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
质地 Texture | pH | OM | CEC | TN | TP | TK | AN | AP | AK | |||
均值Average | 2.60 | 2.27 | 2.17 | 1.71 | 1.56 | 3.00 | 2.57 | 2.14 | 2.95 | 2.54 | 1.69 | Ⅱ级 Two-level (良Good) |
标准偏差Standard deviations (S.D.) | 0.62 | 0.57 | 0.63 | 0.62 | 0.86 | 0.05 | 0.72 | 0.56 | 0.37 | 0.70 | 0.29 | |
范围Range | 0.97~ 3.00 | 0.97~3.00 | 0.78~3.00 | 0.69~3.00 | 0.08~3.00 | 2.69~3.00 | 0.40~3.00 | 1.00~3.00 | 1.38~3.00 | 0.66~3.00 | 1.08~ 2.54 | |
变异系数Coefficient variation (%) | 23.80 | 25.29 | 28.98 | 36.54 | 54.68 | 1.54 | 27.96 | 26.34 | 9.27 | 27.76 | 17.24 |
表7 土壤肥力指数及综合评价
Table 7 The index and integrated evaluation of soil fertility
指标 Parameters | 单项肥力指数 Single fertility index | 综合肥力指数Integrated fertility index (F) | 评价 Evaluation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
质地 Texture | pH | OM | CEC | TN | TP | TK | AN | AP | AK | |||
均值Average | 2.60 | 2.27 | 2.17 | 1.71 | 1.56 | 3.00 | 2.57 | 2.14 | 2.95 | 2.54 | 1.69 | Ⅱ级 Two-level (良Good) |
标准偏差Standard deviations (S.D.) | 0.62 | 0.57 | 0.63 | 0.62 | 0.86 | 0.05 | 0.72 | 0.56 | 0.37 | 0.70 | 0.29 | |
范围Range | 0.97~ 3.00 | 0.97~3.00 | 0.78~3.00 | 0.69~3.00 | 0.08~3.00 | 2.69~3.00 | 0.40~3.00 | 1.00~3.00 | 1.38~3.00 | 0.66~3.00 | 1.08~ 2.54 | |
变异系数Coefficient variation (%) | 23.80 | 25.29 | 28.98 | 36.54 | 54.68 | 1.54 | 27.96 | 26.34 | 9.27 | 27.76 | 17.24 |
1 | Chi Y, Sun J K, Fu Z Y, et al. Which factor determines the spatial variance of soil fertility on uninhabited islands. Geoderma, 2020, 374: 114445. |
2 | Bastida F, Zsolnay A, Hernández T, et al. Past, present and future of soil quality indices: a biological perspective. Geoderma, 2008, 147(3/4): 159-171. |
3 | Jian Z J, Ni Y Y, Xu J, et al. Soil fertility in the Pinus massoniana forests of China. Acta Ecologica Sinica, 2021, 41(13) : 5279-5288. |
简尊吉, 倪妍妍, 徐瑾, 等. 中国马尾松林土壤肥力特征. 生态学报, 2021, 41(13): 5279-5288. | |
4 | Zhang W X, Wang S X, Liu Z B, et al. Evaluating soil fertility improvement effects of chemical fertilizer combined with organic fertilizers in a red paddy soil using the soil fertility index. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 777-790. |
张文学, 王少先, 刘增兵, 等. 基于土壤肥力质量综合指数评价化肥与有机肥配施对红壤稻田肥力的提升作用. 植物营养与肥料学报, 2021, 27(5): 777-790. | |
5 | Xu J M, Zhang G L, Xie Z M, et al. Soil quality index and evaluation. Beijing: Science Press, 2010. |
徐建明, 张甘霖, 谢正苗, 等. 土壤质量指标与评价. 北京: 科学出版社, 2010. | |
6 | Sun B, Zhou S L, Zhao Q G. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 2003, 115(1/2): 85-99. |
7 | Bao Y X, Xu M G, Lv F T, et al. Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012, 45(20): 4197-4204. |
包耀贤, 徐明岗, 吕粉桃, 等. 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012, 45(20): 4197-4204. | |
8 | Zhang B E, Huang B, Zhao Y C, et al. Identification of areas low soil fertility and analysis of their limiting factors in the areas typical of the North China Plain. Acta Pedologica Sinica, 2012, 49(5): 841-849. |
张贝尔, 黄标, 赵永存, 等. 华北平原典型区土壤肥力低下区识别及限制因子分析. 土壤学报, 2012, 49(5): 841-849. | |
9 | Guangdong Provincial Soil Survey Office. Guangdong soil. Beijing: Science Press, 1993. |
广东省土壤普查办公室. 广东土壤. 北京: 科学出版社, 1993. | |
10 | Guangdong Provincial Bureau of Statistics, Guangdong Survey Corps of the National Bureau of Statistics. Guangdong statistical yearbook (2022). Beijing: China Statistics Press, 2022. |
广东省统计局, 国家统计局广东调查总队. 广东统计年鉴(2022). 北京: 中国统计出版社, 2022. | |
11 | Li X J, Li H, Luo H J, et al. Development situation and countermeasures on Guangdong vegetable industry in 2015. Guangdong Agricultural Sciences, 2016, 43(4): 6-10. |
黎小建, 李欢, 罗慧君, 等. 2015年广东蔬菜产业发展形势与对策建议. 广东农业科学, 2016, 43(4): 6-10. | |
12 | Huang S W, Wang Y J, Jin J Y, et al. Status of salinity, pH and nutrients in soils in main vegetable production regions in China. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 906-918. |
黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分、酸碱性和肥力状况. 植物营养与肥料学报, 2011, 17(4): 906-918. | |
13 | Fan Y N, Zhang Y X, Chen Z K, et al.Comprehensive assessments of soil fertility and environmental quality in plastic greenhouse production systems. Geoderma, 2021, 385: 114899. |
14 | Li J G, Wan X, Liu X X, et al. Changes in soil physical and chemical characteristics in intensively cultivated greenhouse vegetable fields in North China. Soil & Tillage Research, 2019, 195: 104366. |
15 | Liang L Z, Zhao X Q, Yi X Y, et al. Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use and Management, 2013, 29: 161-168. |
16 | Lu R K. Methods of soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农化分析方法. 北京: 中国农业科技出版社, 2000. | |
17 | National Soil Census Office. China soil census technology. Beijing: Agricultural Publishing House, 1992. |
全国土壤普查办公室.中国土壤普查技术. 北京: 农业出版社, 1992. | |
18 | Kan W J, Wu Q T. A preliminary study on a quantitative and comprehensive evaluation method of soil fertility. Chinese Journal of Soil Science, 1994, 25(6): 245-247. |
阚文杰, 吴启堂. 一个定量综合评价土壤肥力的方法初探. 土壤通报, 1994, 25(6): 245-247. | |
19 | Gao T, Li J R, Lu J, et al. Soil nutrient and fertility of different slope directions in the Abies georgei var. smithii forest in Sejila Mountain. Acta Ecologica Sinica, 2020, 40(4): 1331-1341. |
高郯, 李江荣, 卢杰, 等. 色季拉山急尖长苞冷杉林不同坡向土壤养分及肥力研究. 生态学报, 2020, 40(4): 1331-1341. | |
20 | Mao W, Li W X, Chen M, et al. Evolution of soil fertility and the main driving factors in Yangzhou city during the past 30 years. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 1998-2009. |
毛伟, 李文西, 陈明, 等. 近30年扬州市耕地土壤肥力变异特征及其驱动因素分析. 植物营养与肥料学报, 2020, 26(11): 1998-2009. | |
21 | Yan L, Wang Y, Feng G Z, et al. Status and change characteristics of farmland soil fertility in Jilin Province. Scientia Agricultura Sinica, 2015, 48(23): 4800-4810. |
焉莉, 王寅, 冯国忠, 等. 吉林省农田土壤肥力现状及变化特征. 中国农业科学, 2015, 48(23): 4800-4810. | |
22 | Wang Q Q, Xu H, Ma C B, et al. Change of soil fertility and productivity of purple soil in Western China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1492-1499. |
王齐齐, 徐虎, 马常宝, 等. 西部地区紫色土近30年来土壤肥力与生产力演变趋势分析. 植物营养与肥料学报, 2018, 24(6): 1492-1499. | |
23 | Zhang Z Q, Mao P, Yu D S, et al. Characteristics of soil pH variation in typical red soil region of South China in the past 25 years—A case study of Yujiang County, Jiangxi Province. Acta Pedologica Sinica, 2018, 55(6): 1545-1553. |
张忠启, 茆彭, 于东升, 等. 近25年来典型红壤区土壤pH变化特征——以江西省余江县为例. 土壤学报, 2018, 55(6): 1545-1553. | |
24 | Wang L, Zhang S X, Ma C B, et al. Characteristics of soil fertility and crop yield evolution in fluvo-aquic soil area in the past 29 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1435-1444. |
王乐, 张淑香, 马常宝, 等. 潮土区29年来土壤肥力和作物产量演变特征. 植物营养与肥料学报, 2018, 24(6): 1435-1444. | |
25 | Zhao T X, E S Z, Wang Y Z, et al. Study on soil fertility quality evolution of solar greenhouse in Hexi corridor. Soil and Fertilizer Sciences in China, 2021(6): 42-47. |
赵天鑫, 俄胜哲, 王玉忠, 等. 河西走廊日光温室土壤肥力质量演变研究. 中国土壤与肥料, 2021(6): 42-47. | |
26 | Wei X T. The changes of soil pH and its’ uncertainties in Henan Province in recent 40 years. Zhengzhou: Zhengzhou University, 2021. |
魏鑫涛. 河南省近40年土壤pH变化及其度量的不确定性. 郑州: 郑州大学, 2021. | |
27 | Li W F, Ye Y C, Zhu A F, et al. Spatio-temporal variation of pH in cropland of Jiangxi Province in the past 30 years and its relationship with acid rain and fertilizer application. Journal of Natural Resources, 2017, 32(11): 1942-1953. |
李伟峰, 叶英聪, 朱安繁, 等. 近30 a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系. 自然资源学报, 2017, 32(11): 1942-1953. | |
28 | Hu M, Xiang Y S, Zhang Z, et al. Variation characteristics of farmland soil pH in the past 30 years of Enshi Autonomous Prefecture, Hubei, China. Chinese Journal of Applied Ecology, 2017, 28(4): 1289-1297. |
胡敏, 向永生, 张智, 等. 恩施州耕地土壤pH近30年变化特征. 应用生态学报, 2017, 28(4): 1289-1297. | |
29 | Fan Y N, Zhang Y X. Hess F, et al. Nutrient balance and soil changes in plastic greenhouse vegetable production. Nutrient Cycling in Agroecosystems, 2020, 117: 77-92. |
30 | Weng B Q, Wu L Q, Lin Y, et al. Challenges and control measures of soil acidification in cultivated land in Fujian Province. Journal of Subtropical Resources and Environment, 2021, 16(4): 32-37. |
翁伯琦, 吴良泉, 林怡, 等. 福建省耕地土壤酸化改良面临的挑战及对策. 亚热带资源与环境学报, 2021, 16(4): 32-37. | |
31 | Zheng C, Guo Z X, Yuan Y Z, et al. Spatial and temporal changes of farmland soil acidification and their influencing factors in different regions of Guangdong Province, China. Chinese Journal of Applied Ecology, 2019, 30(2): 593-601. |
郑超, 郭治兴, 袁宇志, 等. 广东省不同区域农田土壤酸化时空变化及其影响因素. 应用生态学报, 2019, 30(2) : 593-601. | |
32 | Liu Y, Peng Z P, Wang Y Q, et al. Study on the soil characters of vegetable field and adjacent grain field in different cinnamon areas. Journal of Agricultural University of Hebei, 2017, 40(6): 21-26. |
刘洋, 彭正萍, 王艳群, 等. 不同褐土区菜地与相邻粮田土壤性状比对研究. 河北农业大学学报, 2017, 40(6): 21-26. | |
33 | E S Z, Huang T, Wang Y N, et al. Study on greenhouse soil fertility characteristics of Weihe River upstream. Agricultural Research in the Arid Areas, 2016, 34(5): 205-209. |
俄胜哲, 黄涛, 王亚男, 等. 渭河上游地区温室菜地土壤肥力演变特征研究. 干旱地区农业研究, 2016, 34(5): 205-209. | |
34 | Xu Z Y. Spatial variation of soil available nitrogen and phosphorus and risk assessment of contamination for vegetable waste in vegetable field of Huang-Huai-Hai region. Tai’an: Shandong Agricultural University, 2020. |
徐子云. 黄淮海区菜地土壤速效氮磷空间变异及尾菜污染风险评估. 泰安: 山东农业大学, 2020. | |
35 | Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 2011, 349: 157-167. |
36 | Zhang Y C. Fertilizer utilization and the changes of soil nutrient in the farmland of Guangdong province in the last two decades. Soil and Environmental Sciences, 2002, 11(2): 194-196. |
张育灿. 广东省20年来肥料施用与耕地土壤养分变化. 土壤与环境, 2002, 11(2): 194-196. | |
37 | Zeng Z B, Zeng S J, Tang J D, et al. Space-temporal variation of farmland soil AP in Guangdong province and their causing factors. Ecology and Environmental Sciences, 2014, 23(3): 444-451. |
曾招兵, 曾思坚, 汤建东, 等. 广东省耕地土壤有效磷时空变化特征及影响因素分析. 生态环境学报, 2014, 23(3): 444-451. | |
38 | Liu Y F, Zeng Z B, Tang J D, et al. Trend and influence factors analysis of soil available potassium of arable soil in Guangdong. Guangdong Agricultural Sciences, 2015, 42(16): 32-36. |
刘一峰, 曾招兵, 汤建东, 等. 广东耕地土壤速效钾变化趋势及影响因素分析. 广东农业科学, 2015, 42(16): 32-36. | |
39 | Department of Agriculture and Rural Affairs of Guangdong Provincial. Brief report on cultivated land quality monitoring in Guangdong Province in 2019. (2020-09-03)[2023-08-20]. http://dara.gd.gov.cn/zwgk2278/bmdt/content/post_3077919.html. |
广东省农业农村厅. 广东省2019年度耕地质量监测简报. (2020-09-03)[2023-08-20]. http://dara.gd.gov.cn/zwgk2278/bmdt/content/post_3077919.html. | |
40 | Huang S W, Tang J W, Li C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1480-1493. |
黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策. 植物营养与肥料学报, 2017, 23(6): 1480-1493. | |
41 | Guan L L, Fu G N, Xu P J, et al. Investigation and analysis of fertilization status of vegetable soil in Guangdong Province. Journal of Southern Agriculture, 2014, 45(3): 420-424. |
官利兰, 伏广农, 徐鹏举, 等. 广东省菜园土壤施肥状况调查与分析. 南方农业学报, 2014, 45(3): 420-424. | |
42 | Zhang N Y, Wang Q, Zhan X Y, et al. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils. Journal of Integrative Agriculture, 2022, 21(12): 3626-3636. |
43 | Panos P, Julia K, Cristiano B, et al. Improving the phosphorus budget of European agricultural soils. Science of the Total Environment, 2022, 853: 158706. |
44 | Bijay S, Tek B. The effects of adequate and excessive application of mineral fertilizers on the soil. Reference Module in Earth Systems and Environmental Sciences, 2022: 1-13. |
45 | Wang X S, Mi X T, Sun L Q, et al. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. European Journal of Agronomy, 2023, 143: 126728. |
46 | Liu D H. Effects of long-time fertilization on the potassium supplying characteristics of greenhouse vegetable soils. Shenyang: Shenyang Agricultural University, 2009. |
刘代欢. 长期定位施肥对设施蔬菜栽培土壤钾素供应特征影响研究. 沈阳: 沈阳农业大学, 2009. | |
47 | Vladimír Ŝ, Jerzy J, Jarmila H, et al. Does long-term application of mineral fertilizers improve physical properties and nutrient regime of sandy soils. Soil & Tillage Research, 2022, 215: 105224. |
48 | Jia L L, Han B W, Liu M Z, et al. The effects of long term K fertilization and straw recycling on soil K status in Fluvo-aquic soil of Hebei Province. Acta Agriculturae Boreali-Simica, 2014, 29(5): 207-212. |
贾良良, 韩宝文, 刘孟朝, 等. 河北省潮土长期定位施钾和秸秆还田对农田土壤钾素状况的影响. 华北农学报, 2014, 29(5): 207-212. | |
49 | Wang H L. The evolutionary regularity of soil potassium pools of farmland phaeozem. Changchun: Jilin Agricultural University, 2008. |
王海玲. 农田黑土钾库演化规律的研究. 长春: 吉林农业大学, 2008. | |
50 | Tan D S, Jin J Y, Huang S W. Effect of long-term K fertilizer application and returning wheat straw to soil on crop yield and soil K under different planting systems in Northwestern China. Plant Nutrition and Fertilizer Science, 2008, 14(5): 886-893. |
谭德水, 金继运, 黄绍文. 长期施钾与秸秆还田对西北地区不同种植制度下作物产量及土壤钾素的影响. 植物营养与肥料学报, 2008, 14(5): 886-893. | |
51 | Zhou J M, Huang P M. Kinetics of potassium release from illite as influenced by different phosphates. Geoderma, 2007, 138(3): 221-228. |
52 | Rosolem C A, Calonego J C. Phosphorus and potassium budget in the soil-plant system in crop rotations under no-till. Soil and Tillage Research, 2013, 126: 127-133. |
53 | Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of china over the last three decades. Acta Pedologica Sinica, 2017, 54(5): 1047-1056. |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化. 土壤学报, 2017, 54(5): 1047-1056. | |
54 | Wang H X, Xu J L, Liu X J, et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil & Tillage Research, 2019, 195: 104382. |
55 | Wu J J, Cheng X L, Liu G H, et al. Increased soil organic carbon response to fertilization is associated with increasing microbial carbon use efficiency: Data synthesis. Soil Biology and Biochemistry, 2022, 171: 108731. |
56 | Zeng Z B, Tang J D, Liu Y F, et al. Changes and driving forces of farmland organic matter in Guangdong Province, China. Soils, 2013, 45(1): 84-90. |
曾招兵, 汤建东, 刘一峰, 等. 广东耕地土壤有机质的变化趋势及其驱动力分析. 土壤, 2013, 45(1): 84-90. | |
57 | Huang Q Y, Yu J H, Huang J F, et al. Nutrient resources of main crop straw and its potential of substituting for chemical fertilizer in Guangdong province. Ecology and Environmental Sciences, 2022, 31(2): 297-306. |
黄巧义, 于俊红, 黄建凤, 等. 广东省主要农作物秸秆养分资源量及替代化肥潜力. 生态环境学报, 2022, 31(2): 297-306. | |
58 | Shibu M E, Van Keulen H, Leffelaar P A, et al. Soil carbon balance of rice-based cropping systems of the Indo-Gangetic Plains. Geoderma, 2010, 160: 143-154. |
59 | Wang L X, Li Z W, Wang D Y, et al. Factors controlling soil organic carbon with depth at the basin scale. Catena, 2022, 217: 106478. |
60 | Fan Q F, Yu N, Zhang Y L, et al. Effects of vegetable cultivation on soil cation exchange capacity in greenhouse. Acta Pedologica Sinica, 2014, 51(5): 1132-1137. |
范庆锋, 虞娜, 张玉玲, 等. 设施蔬菜栽培对土壤阳离子交换性能的影响. 土壤学报, 2014, 51(5): 1132-1137. | |
61 | Zhang S Q, Huang S M, Guo D D. The correlations and prediction models of cation exchange capacity in three soils in Henan. Chinese Journal of Soil Science, 2011, 42(3): 627-631. |
张水清, 黄绍敏, 郭斗斗. 河南三种土壤阳离子交换量相关性及预测模型研究. 土壤通报, 2011, 42(3): 627-631. | |
62 | Wei X R, Shao M A. Distribution characteristics of soil pH, CEC and organic matter in a small watershed of the Loess Plateau. Chinese Journal of Applied Ecology, 2009, 20(11): 2710-2715. |
魏孝荣, 邵明安. 黄土高原小流域土壤pH、阳离子交换量和有机质分布特征. 应用生态学报, 2009, 20(11): 2710-2715. | |
63 | Ministry of Agriculture of the People’s Republic of China. NY/T 1749-2009. Soil fertility diagnosis and evaluation method of farmland in Southern China. Beijing: China Agriculture Press, 2009. |
中华人民共和国农业部. NY/T 1749-2009. 南方地区耕地土壤肥力诊断与评价. 北京: 中国农业出版社, 2009. | |
64 | Liu S J, Yao X Z, Zhao D G, et al. An evaluation of soil nutrient status and balance in Meitan tea plantations. Acta Prataculturae Sinica, 2020, 29(11): 33-45. |
柳书俊, 姚新转, 赵德刚, 等. 湄潭茶园土壤养分特征及肥力质量评价. 草业学报, 2020, 29(11): 33-45. |
[1] | 吴科生, 车宗贤, 包兴国, 张久东, 卢秉林, 杨新强, 杨蕊菊. 河西绿洲灌区灌漠土长期秸秆还田土壤肥力和作物产量特征分析[J]. 草业学报, 2021, 30(12): 59-70. |
[2] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[3] | 柳书俊, 姚新转, 赵德刚, 吕立堂. 湄潭茶园土壤养分特征及肥力质量评价[J]. 草业学报, 2020, 29(11): 33-45. |
[4] | 杨封科, 何宝林, 张国平, 张立功, 高应平. 膜下秸秆还田添加腐解剂对旱地土壤碳氮积累及土壤肥力性状的影响[J]. 草业学报, 2019, 28(9): 67-76. |
[5] | 尹国丽, 蔡卓山, 陶茸, 吴芳, 陈建纲, 师尚礼. 不同草田轮作方式对土壤肥力、微生物数量及自毒物质含量的影响[J]. 草业学报, 2019, 28(3): 42-50. |
[6] | 赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 阿不都赛买提·乃合买提, 米日尼沙·买买提明, 迪里努尔·艾力. 察布查尔草原土壤酶活性垂直分布及土壤理化性质相关性研究[J]. 草业学报, 2018, 27(3): 116-125. |
[7] | 隋宗明, 刘海, 殷洁, 郭明全, 王勇, 袁玲. 紫茎泽兰堆肥对葡萄产量、品质和土壤性状指标的影响[J]. 草业学报, 2018, 27(2): 88-96. |
[8] | 陈光荣, 王立明, 杨如萍, 董博, 张国宏, 杨桂芳. 西北灌区薯/豆连续套作对系统产量及土壤肥力的影响[J]. 草业学报, 2017, 26(10): 46-55. |
[9] | 邓小军, 陈晓龙, 唐健, 王会利, 韩华, 徐永腾, 何文平. 基于Nemerow法的森林土壤肥力综合指数评[J]. 草业学报, 2016, 25(7): 34-41. |
[10] | 高君亮, 罗凤敏, 高永, 原伟杰, 王淮亮, 党晓宏. 阴山北麓不同土地利用类型土壤养分特征分析与评价[J]. 草业学报, 2016, 25(4): 230-238. |
[11] | 权国玲, 谢开云, 仝宗永, 李向林, 万里强, 毕舒贻, 万修福. 复合微生物肥料对羊草草原土壤理化性质及酶活性的影响[J]. 草业学报, 2016, 25(2): 27-36. |
[12] | 谢昭良,张腾飞,陈鑫珠,张建国. 冬闲田种植2种燕麦的营养价值及土壤肥力研究[J]. 草业学报, 2013, 22(2): 47-53. |
[13] | 折凤霞,郝明德,臧逸飞. 黄土高原沟壑区苜蓿生产力及养分特性的研究[J]. 草业学报, 2013, 22(2): 313-317. |
[14] | 焦婷,常根柱2*,周学辉2,杨红善2,侯彦会,苗小林2,刘荣堂,蒲小鹏. 高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究[J]. 草业学报, 2009, 18(6): 98-104. |
[15] | 侯彦会,周学辉,焦婷,刘荣堂,李兴福. 甘肃永昌县放牧草地土壤脲酶活性与土壤肥力的关系初探[J]. 草业学报, 2009, 18(4): 111-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||