草业学报 ›› 2025, Vol. 34 ›› Issue (8): 109-122.DOI: 10.11686/cyxb2024367
• 研究论文 • 上一篇
马红钰1,2(
), 周小国1,2, 王宝1,2, 宋渝川1,2, 艾克热木·阿不拉提江null1,2, 蒋邵丽1,2, 闵九洲1,2, 赵红梅1,2, 程军回1,2(
)
收稿日期:2024-09-25
修回日期:2024-11-11
出版日期:2025-08-20
发布日期:2025-06-16
通讯作者:
程军回
作者简介:E-mail: cjhgraymice@126.com基金资助:
Hong-yu MA1,2(
), Xiao-guo ZHOU1,2, Bao WANG1,2, Yu-chuan SONG1,2, Aikeremu·Abulatijiang1,2, Shao-li JIANG1,2, Jiu-zhou MIN1,2, Hong-mei ZHAO1,2, Jun-hui CHENG1,2(
)
Received:2024-09-25
Revised:2024-11-11
Online:2025-08-20
Published:2025-06-16
Contact:
Jun-hui CHENG
摘要:
大量研究表明,陆地生态系统中养分循环显著受到土壤微生物功能基因丰度(soil microbial functional gene abundance, SMFGA)变化的影响。目前,有关荒漠生态系统灌木根际土壤中SMFGA的变化特征仍所知甚少。基于此,本研究以准噶尔荒漠两种共存的优势灌木梭梭和柽柳为目标植物,在采集二者根际和株间空地表层土壤(0~10 cm)的基础上,通过宏基因组测序分析了与土壤碳、氮、磷循环相关的67个SMFGA,旨在揭示根际土壤中SMFGA变化特征及其与土壤理化性质(土壤容重、pH、有机质、全氮、全磷、全钾、铵态氮、硝态氮、速效磷和速效钾)和土壤微生物多样性之间的内在联系。研究结果显示:1)与株间空地相比,梭梭和柽柳根际土壤具有较高的速效态养分(铵态氮、硝态氮和速效磷)含量。2)梭梭和柽柳根际土壤中,细菌Shannon-Wiener指数均高于株间空地。真菌Shannon-Wiener指数仅在梭梭根际和株间空地土壤中存在显著差异。3)参与碳、氮、磷循环的15、17和35个功能基因中,分别有6(pulA、nplT、chitinase、nagA、bglB和bglX)、2(nrfH和napB)和8个(gcd、phnG、phnH、phnI、phnL、phnA、phnJ和phnM)功能基因,其相对丰度在梭梭和柽柳根际土壤中显著高于株间空地。4)根际土壤中参与氮、磷循环的SMFGA,与速效钾和pH呈显著正相关关系,而参与碳循环的SMFGA与理化性质和微生物多样性均无显著关系。综合而言,荒漠生态系统中灌木根际效应改变了SMFGA变化特征及其与土壤理化性质和微生物多样性之间的关系。
马红钰, 周小国, 王宝, 宋渝川, 艾克热木·阿不拉提江null, 蒋邵丽, 闵九洲, 赵红梅, 程军回. 准噶尔荒漠梭梭和柽柳根际土壤微生物功能基因丰度变化特征[J]. 草业学报, 2025, 34(8): 109-122.
Hong-yu MA, Xiao-guo ZHOU, Bao WANG, Yu-chuan SONG, Aikeremu·Abulatijiang, Shao-li JIANG, Jiu-zhou MIN, Hong-mei ZHAO, Jun-hui CHENG. Differences in soil microbial functional gene abundance between rhizosphere soils of Haloxylon ammodendron and Tamarix chinensis in the Junggar Desert[J]. Acta Prataculturae Sinica, 2025, 34(8): 109-122.
基因名称 Gene names | 功能注释 Functional annotation | KEGG 编号 KEGG ID | 参考文献 References |
|---|---|---|---|
| 参与土壤碳循环的微生物功能基因 Microbial functional genes involved in soil carbon cycle | |||
| 碳固定Carbon fixation | |||
| rbcS | 核糖-1,5-二磷酸羧化酶小亚基Ribulose-bisphosphate carboxylase small chain | K01602 | [ |
| cbbL | 核糖-1,5-二磷酸羧化酶大亚基Ribulose-bisphosphate carboxylase large chain | K01601 | [ |
| accA | 乙酰辅酶A羧化酶羧基转移酶亚基Acetyl-CoA carboxylase carboxyl transferase subunit alpha | K01962 | [ |
| acsA | 乙酰辅酶A合成酶Acetoacetyl-CoA synthetase | K01907 | [ |
| 碳降解Carbon degradation | |||
| pulA | 支链淀粉酶Pullulanase | K01200 | [ |
| nplT | 新普鲁兰酶Neopullulanase | K01208 | [ |
| pel | 果胶裂解酶Pectate lyase | K01728 | [ |
| chitinase | 几丁质酶Chitinase | K01183 | [ |
| amyA | α-淀粉酶Alpha-amylase | K01176 | [ |
| nagA | N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶N-acetylglucosamine-6-phosphate deacetylase | K01443 | [ |
| abfA | α-L-阿拉伯呋喃糖苷酶Alpha-L-arabinofuranosidase | K01209 | [ |
| bglB | β-葡萄糖苷酶Beta-glucosidase | K05350 | [ |
| xylA | 木糖异构酶Xylose isomerase | K01805 | [ |
| bglX | β-葡萄糖苷酶Beta-glucosidase | K05349 | [ |
| endoglucanase | 内切葡聚糖酶Endoglucanase | K01179 | [ |
| 参与土壤氮循环的微生物功能基因Microbial functional genes involved in soil nitrogen cycle | |||
| 异化硝酸盐还原作用 Dissimilatory nitrate reduction | |||
| napB | 周质硝酸盐还原酶电子转移亚基Periplasmic nitrate reductase electron transfer subunit | K02568 | [ |
| narI | 硝酸还原酶1,γ亚基Nitrate reductase 1, gamma subunit | K00374 | [ |
| narJ | 硝酸还原酶1,δ亚基Nitrate reductase 1, delta subunit | K00373 | [ |
| nrfH | 细胞色素c亚硝酸盐还原酶小亚基Cytochrome c nitrite reductase small subunit | K15876 | [ |
| narH | 硝酸还原酶1,β亚基Nitrate reductase 1, beta subunit | K00371 | [ |
| nrfA | 细胞色素c-552型硝酸盐还原酶Nitrite reductase (cytochrome c-552) | K03385 | [ |
| narG | 硝酸还原酶1,α亚基Nitrate reductase 1, alpha subunit | K00370 | [ |
| nirD | 亚硝酸盐还原酶 (NADH)小亚基Nitrite reductase (NADH) small subunit | K00363 | [ |
| nirB | 亚硝酸盐还原酶 (NADH)大亚基Nitrite reductase (NADH) large subunit | K00362 | [ |
| 反硝化作用 Denitrification | |||
| norC | 一氧化氮还原酶亚基C Nitric-oxide reductase subunit C | K02305 | [ |
| nosZ | 一氧化二氮还原酶Nitrous-oxide reductase | K00376 | [ |
| 硝化作用 Nitrification | |||
| amoA | 氨单加氧酶亚基A Ammonia monooxygenase subunit A | K10944 | [ |
| amoB | 氨单加氧酶亚基B Ammonia monooxygenase subunit B | K10945 | [ |
| 同化硝酸盐还原作用Assimilatory nitrate reduction | |||
| narB | 硝酸铁氧还蛋白还原酶Ferredoxin-nitrate reductase | K00367 | [ |
| nasA | 同化硝酸还原酶催化亚基Assimilatory nitrate reductase catalytic subunit | K00372 | [ |
| nirA | 铁氧还蛋白-亚硝酸盐还原酶Ferredoxin-nitrite reductase | K00366 | [ |
| 厌氧氨氧化作用Anammox | |||
| nirS | 亚硝酸盐还原酶Nitrite reductase | K15864 | [ |
| 参与土壤磷循环的微生物功能基因Microbial functional genes involved in soil phosphorus cycle | |||
| 有机磷矿化Organic phosphorus mineralization | |||
| phnN | 核糖 1,5-二磷酸激酶Ribose 1,5-bisphosphokinase | K05774 | [ |
| phnX | 亚膦酸乙醛水解酶Phosphonoacetaldehyde hydrolase | K05306 | [ |
| phnG | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K06166 | [ |
| phnH | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K06165 | [ |
| phnI | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunitt | K06164 | [ |
| phnL | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K05780 | [ |
| phnA | 亚膦酸乙酸酯水解酶Phosphonoacetate hydrolase | K06193 | [ |
| glpB | 甘油-3-磷酸脱氢酶亚单元B Glycerol-3-phosphate dehydrogenase subunit B | K00112 | [ |
| glpC | 甘油-3-磷酸脱氢酶亚单元C Glycerol-3-phosphate dehydrogenase subunit C | K00113 | [ |
| phnJ | α-D-核糖1-甲基膦酸盐5-磷酸C-P裂解酶Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase | K06163 | [ |
| phnM | α-D-核糖1-甲基膦酸盐5-三磷酸二磷酸酶Alpha-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase | K06162 | [ |
| phnW | 2-氨基乙基膦酸-丙酮酸转氨酶 2-aminoethylphosphonate-pyruvate transaminase | K03430 | [ |
| PhoN | 酸性磷酸酶(A)Acid phosphatase (class A) | K09474 | [ |
| glpQ | 周质甘油磷酸酯磷酸二酯酶Periplasmic glycerophosphoryl diester phosphodiesterase | K01126 | [ |
| phnP | 磷酸核糖基 1,2-环磷酸二酯酶Phosphoribosyl 1,2-cyclic phosphate phosphodiesterase | K06167 | [ |
| phoD | 碱性磷酸酶Alkaline phosphatase | K01113 | [ |
| glpK | 甘油激酶Glycerol kinase | K00864 | [ |
| glpA | 甘油-3-磷酸脱氢酶Glycerol-3-phosphate dehydrogenase | K00111 | [ |
| 无机磷溶解 Inorganic phosphorus solubilization | |||
| gcd | 醌蛋白葡萄糖脱氢酶Quinoprotein glucose dehydrogenase | K00117 | [ |
| ppa | 无机焦磷酸酶Inorganic pyrophosphatase | K01507 | [ |
| ppx | 鸟苷-5'-三磷酸,3'-二磷酸焦磷酸酶Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase | K01524 | [ |
| ppk | 多聚磷酸激酶Polyphosphate kinase | K00937 | [ |
| 磷的转运和吸收 Uptake and transport of phosphorus | |||
| ugpC | sn-甘油-3-磷酸运输系统 ATP 结合蛋白Sn-glycerol 3-phosphate transport system ATP-binding protein | K05816 | [ |
| ugpB | sn-甘油-3-磷酸运输系统底物结合蛋白Sn-glycerol 3-phosphate transport system substrate-binding protein | K05813 | [ |
| ugpE | sn-甘油-3-磷酸运输系统渗透蛋白Sn-glycerol 3-phosphate transport system permease protein | K05815 | [ |
| phnC | 膦酸酯运输系统 ATP 结合蛋白Phosphonate transport system ATP-binding protein | K02041 | [ |
| ugpA | sn-甘油-3-磷酸运输系统渗透蛋白Sn-glycerol 3-phosphate transport system permease protein | K05814 | [ |
| phnD | 膦酸酯运输系统底物结合蛋白Phosphonate transport system substrate-binding protein | K02044 | [ |
| phnE | 膦酸酯运输系统渗透蛋白Phosphonate transport system permease protein | K02042 | [ |
| pstA | 磷酸运输系统渗透蛋白Phosphate transport system permease protein | K02038 | [ |
| pstC | 磷酸运输系统渗透蛋白Phosphate transport system permease protein | K02037 | [ |
| pstB | 磷酸运输系统 ATP 结合蛋白Phosphate transport system ATP-binding protein | K02036 | [ |
| pstS | 磷酸运输系统底物结合蛋白Phosphate transport system substrate-binding protein | K02040 | [ |
| 磷缺乏响应调控 Regulation of phosphorus starvation responses | |||
| phoR | 磷酸盐调节感应激酶Phosphate regulation sensor histidine kinase | K07636 | [ |
| phoB | 磷酸盐调节反应调控子Phosphate regulation response regulator | K07657 | [ |
表1 参与土壤碳、氮和磷循环的微生物功能基因
Table 1 Microbial functional genes involved in soil carbon, nitrogen and phosphorus cycles
基因名称 Gene names | 功能注释 Functional annotation | KEGG 编号 KEGG ID | 参考文献 References |
|---|---|---|---|
| 参与土壤碳循环的微生物功能基因 Microbial functional genes involved in soil carbon cycle | |||
| 碳固定Carbon fixation | |||
| rbcS | 核糖-1,5-二磷酸羧化酶小亚基Ribulose-bisphosphate carboxylase small chain | K01602 | [ |
| cbbL | 核糖-1,5-二磷酸羧化酶大亚基Ribulose-bisphosphate carboxylase large chain | K01601 | [ |
| accA | 乙酰辅酶A羧化酶羧基转移酶亚基Acetyl-CoA carboxylase carboxyl transferase subunit alpha | K01962 | [ |
| acsA | 乙酰辅酶A合成酶Acetoacetyl-CoA synthetase | K01907 | [ |
| 碳降解Carbon degradation | |||
| pulA | 支链淀粉酶Pullulanase | K01200 | [ |
| nplT | 新普鲁兰酶Neopullulanase | K01208 | [ |
| pel | 果胶裂解酶Pectate lyase | K01728 | [ |
| chitinase | 几丁质酶Chitinase | K01183 | [ |
| amyA | α-淀粉酶Alpha-amylase | K01176 | [ |
| nagA | N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶N-acetylglucosamine-6-phosphate deacetylase | K01443 | [ |
| abfA | α-L-阿拉伯呋喃糖苷酶Alpha-L-arabinofuranosidase | K01209 | [ |
| bglB | β-葡萄糖苷酶Beta-glucosidase | K05350 | [ |
| xylA | 木糖异构酶Xylose isomerase | K01805 | [ |
| bglX | β-葡萄糖苷酶Beta-glucosidase | K05349 | [ |
| endoglucanase | 内切葡聚糖酶Endoglucanase | K01179 | [ |
| 参与土壤氮循环的微生物功能基因Microbial functional genes involved in soil nitrogen cycle | |||
| 异化硝酸盐还原作用 Dissimilatory nitrate reduction | |||
| napB | 周质硝酸盐还原酶电子转移亚基Periplasmic nitrate reductase electron transfer subunit | K02568 | [ |
| narI | 硝酸还原酶1,γ亚基Nitrate reductase 1, gamma subunit | K00374 | [ |
| narJ | 硝酸还原酶1,δ亚基Nitrate reductase 1, delta subunit | K00373 | [ |
| nrfH | 细胞色素c亚硝酸盐还原酶小亚基Cytochrome c nitrite reductase small subunit | K15876 | [ |
| narH | 硝酸还原酶1,β亚基Nitrate reductase 1, beta subunit | K00371 | [ |
| nrfA | 细胞色素c-552型硝酸盐还原酶Nitrite reductase (cytochrome c-552) | K03385 | [ |
| narG | 硝酸还原酶1,α亚基Nitrate reductase 1, alpha subunit | K00370 | [ |
| nirD | 亚硝酸盐还原酶 (NADH)小亚基Nitrite reductase (NADH) small subunit | K00363 | [ |
| nirB | 亚硝酸盐还原酶 (NADH)大亚基Nitrite reductase (NADH) large subunit | K00362 | [ |
| 反硝化作用 Denitrification | |||
| norC | 一氧化氮还原酶亚基C Nitric-oxide reductase subunit C | K02305 | [ |
| nosZ | 一氧化二氮还原酶Nitrous-oxide reductase | K00376 | [ |
| 硝化作用 Nitrification | |||
| amoA | 氨单加氧酶亚基A Ammonia monooxygenase subunit A | K10944 | [ |
| amoB | 氨单加氧酶亚基B Ammonia monooxygenase subunit B | K10945 | [ |
| 同化硝酸盐还原作用Assimilatory nitrate reduction | |||
| narB | 硝酸铁氧还蛋白还原酶Ferredoxin-nitrate reductase | K00367 | [ |
| nasA | 同化硝酸还原酶催化亚基Assimilatory nitrate reductase catalytic subunit | K00372 | [ |
| nirA | 铁氧还蛋白-亚硝酸盐还原酶Ferredoxin-nitrite reductase | K00366 | [ |
| 厌氧氨氧化作用Anammox | |||
| nirS | 亚硝酸盐还原酶Nitrite reductase | K15864 | [ |
| 参与土壤磷循环的微生物功能基因Microbial functional genes involved in soil phosphorus cycle | |||
| 有机磷矿化Organic phosphorus mineralization | |||
| phnN | 核糖 1,5-二磷酸激酶Ribose 1,5-bisphosphokinase | K05774 | [ |
| phnX | 亚膦酸乙醛水解酶Phosphonoacetaldehyde hydrolase | K05306 | [ |
| phnG | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K06166 | [ |
| phnH | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K06165 | [ |
| phnI | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunitt | K06164 | [ |
| phnL | α-D-核糖1-甲基膦酸盐5-三磷酸合成酶亚基Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit | K05780 | [ |
| phnA | 亚膦酸乙酸酯水解酶Phosphonoacetate hydrolase | K06193 | [ |
| glpB | 甘油-3-磷酸脱氢酶亚单元B Glycerol-3-phosphate dehydrogenase subunit B | K00112 | [ |
| glpC | 甘油-3-磷酸脱氢酶亚单元C Glycerol-3-phosphate dehydrogenase subunit C | K00113 | [ |
| phnJ | α-D-核糖1-甲基膦酸盐5-磷酸C-P裂解酶Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase | K06163 | [ |
| phnM | α-D-核糖1-甲基膦酸盐5-三磷酸二磷酸酶Alpha-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase | K06162 | [ |
| phnW | 2-氨基乙基膦酸-丙酮酸转氨酶 2-aminoethylphosphonate-pyruvate transaminase | K03430 | [ |
| PhoN | 酸性磷酸酶(A)Acid phosphatase (class A) | K09474 | [ |
| glpQ | 周质甘油磷酸酯磷酸二酯酶Periplasmic glycerophosphoryl diester phosphodiesterase | K01126 | [ |
| phnP | 磷酸核糖基 1,2-环磷酸二酯酶Phosphoribosyl 1,2-cyclic phosphate phosphodiesterase | K06167 | [ |
| phoD | 碱性磷酸酶Alkaline phosphatase | K01113 | [ |
| glpK | 甘油激酶Glycerol kinase | K00864 | [ |
| glpA | 甘油-3-磷酸脱氢酶Glycerol-3-phosphate dehydrogenase | K00111 | [ |
| 无机磷溶解 Inorganic phosphorus solubilization | |||
| gcd | 醌蛋白葡萄糖脱氢酶Quinoprotein glucose dehydrogenase | K00117 | [ |
| ppa | 无机焦磷酸酶Inorganic pyrophosphatase | K01507 | [ |
| ppx | 鸟苷-5'-三磷酸,3'-二磷酸焦磷酸酶Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase | K01524 | [ |
| ppk | 多聚磷酸激酶Polyphosphate kinase | K00937 | [ |
| 磷的转运和吸收 Uptake and transport of phosphorus | |||
| ugpC | sn-甘油-3-磷酸运输系统 ATP 结合蛋白Sn-glycerol 3-phosphate transport system ATP-binding protein | K05816 | [ |
| ugpB | sn-甘油-3-磷酸运输系统底物结合蛋白Sn-glycerol 3-phosphate transport system substrate-binding protein | K05813 | [ |
| ugpE | sn-甘油-3-磷酸运输系统渗透蛋白Sn-glycerol 3-phosphate transport system permease protein | K05815 | [ |
| phnC | 膦酸酯运输系统 ATP 结合蛋白Phosphonate transport system ATP-binding protein | K02041 | [ |
| ugpA | sn-甘油-3-磷酸运输系统渗透蛋白Sn-glycerol 3-phosphate transport system permease protein | K05814 | [ |
| phnD | 膦酸酯运输系统底物结合蛋白Phosphonate transport system substrate-binding protein | K02044 | [ |
| phnE | 膦酸酯运输系统渗透蛋白Phosphonate transport system permease protein | K02042 | [ |
| pstA | 磷酸运输系统渗透蛋白Phosphate transport system permease protein | K02038 | [ |
| pstC | 磷酸运输系统渗透蛋白Phosphate transport system permease protein | K02037 | [ |
| pstB | 磷酸运输系统 ATP 结合蛋白Phosphate transport system ATP-binding protein | K02036 | [ |
| pstS | 磷酸运输系统底物结合蛋白Phosphate transport system substrate-binding protein | K02040 | [ |
| 磷缺乏响应调控 Regulation of phosphorus starvation responses | |||
| phoR | 磷酸盐调节感应激酶Phosphate regulation sensor histidine kinase | K07636 | [ |
| phoB | 磷酸盐调节反应调控子Phosphate regulation response regulator | K07657 | [ |
土壤理化性质 Soil physical and chemical properties | 梭梭H. ammodendron | 柽柳T. chinensis | ||
|---|---|---|---|---|
| 根际土壤Rhizosphere soil | 株间空地Bulk soil | 根际土壤Rhizosphere soil | 株间空地Bulk soil | |
| pH | 9.69±0.23a | 8.72±0.08b | 8.01±0.01c | 8.27±0.03c |
| 土壤含水量Soil moisture content (SWC, %) | 2.14±0.49a | 2.15±0.17a | 2.53±0.19a | 2.61±0.36a |
| 容重Bulk density (BD, g·cm-3) | 1.39±0.04b | 1.49±0.02a | 1.36±0.02b | 1.51±0.02a |
| 土壤有机质Soil organic matter (SOM, g·kg-1) | 4.08±0.76ab | 3.36±0.99b | 6.06±0.51a | 5.14±1.00ab |
| 全氮Total nitrogen (g·kg-1) | 0.50±0.04a | 0.52±0.04a | 0.46±0.02a | 0.54±0.08a |
| 全磷Total phosphorus ( g·kg-1) | 0.48±0.04a | 0.46±0.03a | 0.52±0.03a | 0.57±0.04a |
| 全钾Total potassium (g·kg-1) | 1.09±0.19a | 0.66±0.23a | 0.85±0.12a | 0.92±0.20a |
| NH4+-N (mg·kg-1) | 1.04±0.12a | 0.39±0.04b | 0.97±0.10a | 0.60±0.05b |
| NO3--N (mg·kg-1) | 11.32±2.29a | 2.56±0.63b | 12.11±1.15a | 6.58±0.78b |
| 土壤速效磷Available phosphorus (mg·kg-1) | 26.39±2.19c | 14.08±2.82d | 52.47±1.78a | 38.72±2.27b |
| 土壤速效钾Available potassium (mg·kg-1) | 171.76±15.69a | 86.04±8.96b | 107.91±7.78b | 114.61±1.80b |
表2 梭梭和柽柳根际与株间空地土壤理化性质变化特征(平均值±标准误)
Table 2 Variations of soil physical and chemical properties between rhizosphere soils of H. ammodendron and T.chinensis and bulk soils (mean±standard error)
土壤理化性质 Soil physical and chemical properties | 梭梭H. ammodendron | 柽柳T. chinensis | ||
|---|---|---|---|---|
| 根际土壤Rhizosphere soil | 株间空地Bulk soil | 根际土壤Rhizosphere soil | 株间空地Bulk soil | |
| pH | 9.69±0.23a | 8.72±0.08b | 8.01±0.01c | 8.27±0.03c |
| 土壤含水量Soil moisture content (SWC, %) | 2.14±0.49a | 2.15±0.17a | 2.53±0.19a | 2.61±0.36a |
| 容重Bulk density (BD, g·cm-3) | 1.39±0.04b | 1.49±0.02a | 1.36±0.02b | 1.51±0.02a |
| 土壤有机质Soil organic matter (SOM, g·kg-1) | 4.08±0.76ab | 3.36±0.99b | 6.06±0.51a | 5.14±1.00ab |
| 全氮Total nitrogen (g·kg-1) | 0.50±0.04a | 0.52±0.04a | 0.46±0.02a | 0.54±0.08a |
| 全磷Total phosphorus ( g·kg-1) | 0.48±0.04a | 0.46±0.03a | 0.52±0.03a | 0.57±0.04a |
| 全钾Total potassium (g·kg-1) | 1.09±0.19a | 0.66±0.23a | 0.85±0.12a | 0.92±0.20a |
| NH4+-N (mg·kg-1) | 1.04±0.12a | 0.39±0.04b | 0.97±0.10a | 0.60±0.05b |
| NO3--N (mg·kg-1) | 11.32±2.29a | 2.56±0.63b | 12.11±1.15a | 6.58±0.78b |
| 土壤速效磷Available phosphorus (mg·kg-1) | 26.39±2.19c | 14.08±2.82d | 52.47±1.78a | 38.72±2.27b |
| 土壤速效钾Available potassium (mg·kg-1) | 171.76±15.69a | 86.04±8.96b | 107.91±7.78b | 114.61±1.80b |
香农-威纳指数 Shannon-Wiener index | 梭梭 H. ammodendron | 柽柳 T. chinensis | ||
|---|---|---|---|---|
| 根际土壤Rhizosphere soils | 株间空地Bulk soils | 根际土壤Rhizosphere soils | 株间空地Bulk soils | |
| 细菌Bacterial | 6.45±0.12a | 5.61±0.11c | 6.54±0.07a | 6.05±0.09b |
| 真菌Fungi | 4.14±0.05a | 3.78±0.18b | 4.17±0.11a | 4.11±0.02ab |
表3 土壤细菌与真菌香农-威纳指数变化特征(平均值±标准误)
Table 3 Variations of Shannon-Wiener index of soil bacterial and fungi (mean±standard error)
香农-威纳指数 Shannon-Wiener index | 梭梭 H. ammodendron | 柽柳 T. chinensis | ||
|---|---|---|---|---|
| 根际土壤Rhizosphere soils | 株间空地Bulk soils | 根际土壤Rhizosphere soils | 株间空地Bulk soils | |
| 细菌Bacterial | 6.45±0.12a | 5.61±0.11c | 6.54±0.07a | 6.05±0.09b |
| 真菌Fungi | 4.14±0.05a | 3.78±0.18b | 4.17±0.11a | 4.11±0.02ab |
图1 参与碳循环的土壤微生物功能基因丰度变化特征不同小写字母表示两个物种(梭梭和柽柳)在不同位置(根际和株间空地)间存在显著差异(P<0.05),下同. Different lowercase letters indicate significant differences (P<0.05) between two species (H. ammodendron and T. chinensis) in different locations (rhizosphere and bulk soils), the same below.
Fig.1 Variations of soil microbial functional gene abundance related with carbon cycle
图4 碳、氮、磷循环功能基因与土壤理化性质及微生物多样性之间的关系SWC: 土壤含水率Soil water content; BD: 容重Bulk density; SOM: 土壤有机质Soil organic matter; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; NH4+-N: 铵态氮Ammonium nitrogen; NO3--N: 硝态氮Nitrate nitrogen; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium. Bacteria和Fungi分别为细菌和真菌香农-威纳指数Shannon-Wiener index of bacterial and fungi. *: P<0.05; **: P<0.01; ***: P<0.001.
Fig.4 The relationship between carbon, nitrogen, and phosphorus cycling functional genes with soil physical-chemical properties as well as microbial diversity
| 1 | Long Y C, Ma W W, Song L C, et al. The key microbial functional gene of soil nitrogen transformation in different degradation stages of Gahai wetland. Chinese Journal of Ecology, 2022, 41(10): 1923-1931. |
| 龙永春, 马维伟, 宋良翠, 等. 尕海湿地不同退化阶段土壤氮转化的关键微生物功能基因. 生态学杂志, 2022, 41(10): 1923-1931. | |
| 2 | Wang Q, Liu H W, Jia S X, et al. Effect of conservation tillage on microbial functional genes related to carbon cycle of black soil. Acta Ecologica Sinica, 2023, 43(11): 4760-4771. |
| 王倩, 刘红文, 贾淑霞, 等. 保护性耕作对东北黑土微生物碳循环功能基因的影响. 生态学报, 2023, 43(11): 4760-4771. | |
| 3 | Zhang Q F, Zhou J C, Li X J, et al. Contrasting effects of warming and N deposition on soil microbial functional genes in a subtropical forest. Geoderma, 2022, 408(4): 115588. |
| 4 | Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology and Biochemistry, 2018, 127(12): 230-238. |
| 5 | Zhao Y P, Zhao Y Q, Zhang S H, et al. N-cycle gene abundance determination of N mineralization rate following re-afforestation in the Loess Plateau of China. Soil Ecology Letters, 2024, 6(1): 230188. |
| 6 | Liu S W, Zeng J X, Yu H, et al. Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils. The ISME Journal, 2023, 17(8): 1278-1289. |
| 7 | Wang X W, Guo H, Wang J N, et al. Microbial phosphorus-cycling genes in soil under global change. Global Change Biology, 2024, 30(4): e17281. |
| 8 | Wang C, Yu Q Y, Ji N N, et al. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nature Communications, 2023, 14(1): 7437. |
| 9 | Hu M J, Sardans J, Sun D Y, et al. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. Environmental Research, 2024, 251(2): 118715. |
| 10 | Liu S, Yao J N, Zhang J J, et al. Functional gene abundance and community diversity of ammonia-oxidizing and denitrifying microorganisms in the rhizosphere soil of desert leguminous shrubs. Acta Prataculturae Sinica, 2024, 33(5): 115-127. |
| 刘爽, 姚佳妮, 张钧杰, 等. 荒漠豆科灌丛根际土壤氨氧化和反硝化微生物功能基因丰度及群落多样性特征. 草业学报, 2024, 33(5): 115-127. | |
| 11 | Zhi R C, Deng J, Xu Y L, et al. Altered microbial P cycling genes drive P availability in soil after afforestation. Journal of Environmental Management, 2023, 328(4): 116998. |
| 12 | Trivedi P, Delgado-Baquerizo M, Trivedi C, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. The ISME Journal, 2016, 10(11): 2593-2604. |
| 13 | Ling N, Wang T T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13(1): 836. |
| 14 | Liu X D, Chen L, Yang X G, et al. “Fertile island” effect of soil nutrients occurring in Caragana korshinskii and Artemisia ordosica shrubs in desert steppe. Journal of Northwest Forestry University, 2016, 31(4): 26-32. |
| 刘学东, 陈林, 杨新国, 等. 荒漠草原2种柠条(Caragana korshinskii)和油蒿(Artemisia ordosica)灌丛土壤养分“肥岛”效应.西北林学院学报, 2016, 31(4): 26-32. | |
| 15 | Sun M M, Tian L, Qiao Z W, et al. Physicochemical properties and fungal community characteristics of rhizosphere and non-rhizosphere soils of Hippophae rhamnoides in Pisha sandstone area of Inner Mongolia. Acta Microbiologica Sinica, 2024, 64(6): 1747-1765. |
| 孙美美, 田丽, 乔紫薇, 等. 内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征. 微生物学报, 2024, 64(6): 1747-1765. | |
| 16 | Wu D Y, Jiang L M, Li W J, et al. Drivers of rhizosphere microbial differences in desert genus Haloxylon. Land Degradation & Development, 2023, 34(12): 3513-3524. |
| 17 | Liu H X, Sun Z J, Dong Y Q, et al. Precipitation drives the accumulation of soil organic carbon in the sandy desert of the Junggar Basin, Northwest China. Ecological Indicators, 2022, 142(9): 109224. |
| 18 | Zhou H F, Li Y, Tang Y, et al. The characteristics of the snow-cover and snowmelt water storage in Gurbantunggut Desert. Arid Zone Research, 2009, 26(3): 312-317. |
| 周宏飞, 李彦, 汤英, 等. 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 2009, 26(3): 312-317. | |
| 19 | Zhang S H, Tao Y, Chen Y S, et al. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China. Biodiversity Science, 2022, 30(8): 140-150. |
| 张世航, 陶冶, 陈玉森, 等. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素. 生物多样性, 2022, 30(8): 140-150. | |
| 20 | Ji F, Fan Z L, Zhao G H. Comparative analysis of soil physicochemical characteristics of aeolian sandy soil in two deserts in Xinjiang. Arid Zone Research, 1995, 12(1): 19-25. |
| 季方, 樊自立, 赵贵海. 新疆两大沙漠风沙土土壤理化特性对比分析. 干旱区研究, 1995, 12(1): 19-25. | |
| 21 | Qian Y B, Zhang L Y, Wu Z N, et al. Characteristics of eco-environment in the margin regions of the Junggar Basin, Xinjiang. Arid Land Geography, 2003, 26(1): 30-36. |
| 钱亦兵, 张立运, 吴兆宁, 等. 新疆准噶尔盆地边缘部分地段生态环境特征. 干旱区地理, 2003, 26(1): 30-36. | |
| 22 | Liu Z Q, Liu T, Zhang R, et al. Species diversity and spatial differentiation of ephemeral plant community in southern Gurbantunggut Desert. Chinese Journal of Ecology, 2011, 30(1): 45-52. |
| 刘忠权, 刘彤, 张荣, 等. 古尔班通古特沙漠南部短命植物群落物种多样性及空间分异. 生态学杂志, 2011, 30(1): 45-52. | |
| 23 | Pan S Y, Song Y C, Yuan R Y, et al. Variations in soil inorganic nitrogen content under canopies of two shrubs in the Junggar Desert. Acta Prataculturae Sinica, 2024, 33(5): 183-195. |
| 潘斯瑶, 宋渝川, 袁如薏, 等. 准噶尔荒漠两种灌木冠下土壤无机氮含量变化特征. 草业学报, 2024, 33(5): 183-195. | |
| 24 | Liu Y H, Sheng J D, Wu H Q, et al. Study on variation features of soil particles in “fertile islands” of three desert vegetations in arid region. Soils, 2011, 43(6): 975-980. |
| 刘耘华, 盛建东, 武红旗, 等. 干旱区三种荒漠植被“肥岛”土壤颗粒变异特征研究. 土壤, 2011, 43(6): 975-980. | |
| 25 | Chen X M, He B, Ding C, et al. Diversity and functional distribution characteristics of myxobacterial communities in the rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland, China. Microorganisms, 2023, 11(8): 1924. |
| 26 | Liu L X, Ma L Y, Zhu M M, et al. Rhizosphere microbial community assembly and association networks strongly differ based on vegetation type at a local environment scale. Frontiers in Microbiology, 2023, 14(1): 1129471. |
| 27 | Cao Y F, Li Y, Li C H, et al. The spatial distribution of soil microbes around a desert shrub of Haloxylon ammodendron. Acta Ecologica Sinica, 2016, 36(6): 1628-1635. |
| 曹艳峰, 李彦, 李晨华, 等. 荒漠灌木梭梭(Haloxylon ammodendron)周围土壤微生物的空间分布. 生态学报, 2016, 36(6): 1628-1635. | |
| 28 | Bao S D. Soil and agricultural chemistry analysis (the third edition). Beijing: China Agricultural Press, 2000. |
| 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
| 29 | Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152. |
| 30 | Kanehisa M, Goto S, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 2016, 44(1): 457-462. |
| 31 | He Z L, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal, 2010, 4(9): 1167-1179. |
| 32 | Qin J Q, Xiao Z R, Ming A G, et al. Effect of monoculture and mixed plantation with coniferous and broadleaved tree species on soil microbial carbon cycle functional gene abundance. Ecology and Environmental Sciences, 2023, 32(10): 1719-1731. |
| 秦佳琪, 肖指柔, 明安刚, 等. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响. 生态环境学报, 2023, 32(10): 1719-1731. | |
| 33 | Zhao M Y, Shen H H, Zhu Y K, et al. Asymmetric responses of abundance and diversity of N-cycling genes to altered precipitation in arid grasslands. Functional Ecology, 2023, 37(11): 2953-2966. |
| 34 | Zhang B Y, Yu K. Application of microbial gene databases in the annotation of nitrogen cycle functional genes. Microbiology China, 2020, 47(9): 3021-3038. |
| 张博雅, 余珂. 微生物基因数据库在氮循环功能基因注释中的应用. 微生物学通报, 2020, 47(9): 3021-3038. | |
| 35 | Liu J, Cade-Menun B J, Yang J J, et al. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils. Frontiers in Microbiology, 2018, 9(1): 1643. |
| 36 | Tang Z X, Gao J S, Song A L, et al. Impact of green manure on microbial phosphorus cycling genes in rice rhizosphere as investigated by metagenomics. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1578-1590. |
| 唐治喜, 高菊生, 宋阿琳, 等. 用宏基因组学方法研究绿肥对水稻根际微生物磷循环功能基因的影响. 植物营养与肥料学报, 2020, 26(9): 1578-1590. | |
| 37 | Lin Q, Xiao Z R, Ming A G, et al. Soil phosphorus cycling microbial functional genes of monoculture and mixed plantations of native tree species in subtropical China. Frontiers in Microbiology, 2024, 15(1): 1419645. |
| 38 | De Mendiburu F. Agricolae: statistical procedures for agricultural research. R package version 1.3-7. (2023-11-12)[2024-06-01]. https://CRAN.R-project.org/package=agricolae. |
| 39 | Oksanen J, Simpson G L, Blanchet F G, et al. Vegan: Community ecology package. R package version 2.6-8. (2022-10-11)[2024-06-17]. https://CRAN.R-project.org/package=vegan. |
| 40 | Huang H Y. linkET: Everything is linkable. R package version 0.0.7.4. (2023-06-30)[2024-06-25]. https://github.com/Hy4m/linkET. |
| 41 | Liu S B, He F K, Kuzyakov Y, et al. Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors. Science of the Total Environment, 2022, 826(25): 153908. |
| 42 | Deng L, Peng C H, Kim D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 2021, 214(3): 103501. |
| 43 | Yang R H, Zhao C Y, Wang X J, et al. Phylogenetic diversity preliminary analysis of Haloxylon ammodendron and Tamarix ramosissima soil bacteria. Soils, 2016, 48(6): 1120-1130. |
| 杨瑞红, 赵成义, 王新军, 等. 梭梭和柽柳土壤微生物多样性初步分析. 土壤, 2016, 48(6): 1120-1130. | |
| 44 | Martens R. Contribution of rhizodeposits to the maintenance and growth of soil microbial biomass. Soil Biology and Biochemistry, 1990(1):141-147. |
| 45 | Chen H, Tang H Y, Guo J H, et al. Root exudates’ roles and analytical techniques progress. Soils, 2023, 55(2): 225-233. |
| 陈虹, 唐昊冶, 郭家欢, 等. 根系分泌物主要作用及解析技术进展. 土壤, 2023, 55(2): 225-233. | |
| 46 | Xiao F N, Jiang M, Li Y Y, et al. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River. Arid Land Geography, 2021, 44(3): 759-768. |
| 肖方南, 姜梦, 李媛媛, 等. 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析. 干旱区地理, 2021, 44(3): 759-768. | |
| 47 | Chen F, Zhang J, Han E N, et al. Soil microbial diversity and its relationship with soil physicochemical properties in Urat natural Haloxylon ammodendron forest. Journal of Desert Research, 2022, 42(2): 207-214. |
| 陈峰, 张静, 韩二牛, 等. 乌拉特天然梭梭(Haloxylon ammodendron)林土壤微生物多样性及其与土壤性质的关系. 中国沙漠, 2022, 42(2): 207-214. | |
| 48 | Domeignoz-Horta L A, Pold G, Liu X A, et al. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 2020, 11(1): 3684. |
| 49 | Liao J J, Dou Y X, Yang X, et al. Soil microbial community and their functional genes during grassland restoration. Journal of Environmental Management, 2023, 325(1): 116488. |
| 50 | Liu S Y, Dai J H, Wei H H, et al. Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification pathways are leveraged by cyclic AMP receptor protein (CRP) paralogues based on electron donor/acceptor limitation in Shewanella loihica PV-4. Applied and Environmental Microbiology, 2021, 87(2): e01964-20. |
| 51 | Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276. |
| 52 | Lata J C, Degrange V, Raynaud X, et al. Grass populations control nitrification in savanna soils. Functional Ecology, 2004, 18(4): 605-611. |
| 53 | Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008, 180(2): 442-451. |
| 54 | Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 2011, 156(3): 989-996. |
| 55 | Li W J, Wang J L, Jiang L M, et al. Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions. Catena, 2023, 222(3): 106809. |
| 56 | Bi B, Li G, Goll D S, et al. Soil phosphorus availability and altered root phosphorus-acquisition strategies. Global Change Biology, 2024, 30(5): e17310. |
| 57 | Wang S Q, Song M H, Wang C M, et al. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of the Total Environment, 2023, 904(50): 166403. |
| 58 | Tao Y, Liu Y B, Wu G L, et al. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China. Acta Prataculturae Sinica, 2016, 25(7): 13-23. |
| 陶冶, 刘耀斌, 吴甘霖, 等. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局. 草业学报, 2016, 25(7): 13-23. | |
| 59 | Su P X. Review and prospect of the researches on C4 woody plants and soil inorganic carbon sequestration in deserts of China. Journal of Desert Research, 2022, 42(1): 23-33. |
| 苏培玺. 中国荒漠C4木本植物和土壤无机固碳研究回顾与展望. 中国沙漠, 2022, 42(1): 23-33. | |
| 60 | Zhang Y, He G X, Yang L L, et al. Phosphorus fertilizer application shifts the rhizosphere bacterial community and their carbon, nitrogen and phosphorus-cycle genes in a Phoebe bournei young plantation. Applied Soil Ecology, 2024, 198(6): 105391. |
| [1] | 郭彬, 罗维成, 单立山, 安宁, 刘冰. 模拟增温对河西走廊典型荒漠灌木光合作用的影响[J]. 草业学报, 2025, 34(7): 145-157. |
| [2] | 王颖, 李明源, 麦日艳古·亚生null, 王继莲. 新疆托木尔峰不同植物根际土壤真菌群落结构比较研究[J]. 草业学报, 2025, 34(7): 83-94. |
| [3] | 李毅夫, 孙斌, 南志标, 刘世荣, 高志海, 黄晓东, 张美男, 李长龙, 张景波, 吴水荣, 王琫瑜. 中国北方林间草地分类体系研究[J]. 草业学报, 2025, 34(3): 175-188. |
| [4] | 潘斯瑶, 宋渝川, 袁如薏, 候圣彤, 蔡俊歌, 陈冰, 程军回. 准噶尔荒漠两种灌木冠下土壤无机氮含量变化特征[J]. 草业学报, 2024, 33(5): 183-195. |
| [5] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
| [6] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
| [7] | 李美慧, 李玉华, 晏昕辉, 拓行行, 杨梦茹, 王子临, 李伟. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究[J]. 草业学报, 2023, 32(5): 27-39. |
| [8] | 许代香, 杨建峰, 苏杭, 翟建荣, 綦才, 赵龙刚, 郭彦军. 间作模式下作物根际土壤代谢物对微生物群落的影响[J]. 草业学报, 2023, 32(11): 65-80. |
| [9] | 金欣悦, 龚莉, 王梦亭, 陶冶, 周多奇. 紫草科2种短命植物功能性状的差异化协变特征[J]. 草业学报, 2023, 32(10): 58-70. |
| [10] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
| [11] | 胥生荣, 张恩和, 马瑞丽, 王琦, 刘青林, 黄钰芳. 覆盖对枸杞根系土壤环境和水分利用的影响[J]. 草业学报, 2019, 28(2): 12-22. |
| [12] | 张义凡, 陈林, 李学斌, 李月飞, 杨新国. 不同荒漠草原植被根际与非根际土壤养分及碳库管理指数特征[J]. 草业学报, 2017, 26(8): 24-34. |
| [13] | 周媛媛,周向睿,周志宇,金茜,李金辉,宋鑫. 不同株龄蒙古岩黄芪表型性状的变异特征[J]. 草业学报, 2015, 24(3): 134-141. |
| [14] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
| [15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||