草业学报 ›› 2025, Vol. 34 ›› Issue (7): 145-157.DOI: 10.11686/cyxb2024333
• 研究论文 • 上一篇
郭彬1(
), 罗维成2, 单立山1(
), 安宁2,3, 刘冰2
收稿日期:2024-08-28
修回日期:2024-11-06
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
单立山
作者简介:E-mail: shanls@gsau.edu.cn基金资助:
Bin GUO1(
), Wei-cheng LUO2, Li-shan SHAN1(
), Ning AN2,3, Bing LIU2
Received:2024-08-28
Revised:2024-11-06
Online:2025-07-20
Published:2025-05-12
Contact:
Li-shan SHAN
摘要:
在全球气候变暖的背景下,西北地区气候趋于暖湿化,对植物的生长发育和生理生态过程产生重要影响。然而,气候变暖对荒漠植物光合作用的具体影响尚无一致结论。本研究以河西走廊典型荒漠灌木泡泡刺、梭梭、柠条和荒漠区植物柽柳为对象,利用不同高度(1.0、1.8和2.3 m)开顶式气室(OTC)模拟增温,探究典型荒漠灌木光合作用对增温的响应机制。结果表明:1)在植物生长季(4-9月),不同高度OTC使空气平均温度分别升高1.7、2.5和3.5 ℃,10 cm土壤温度升高0.6、1.2和1.8 ℃,40 cm土壤温度升高0.8、1.2和1.8 ℃。2)增温显著提高了C3植物泡泡刺、柽柳和柠条的净光合速率,但对C4植物梭梭的影响不显著,其中柠条的净光合速率随增温幅度增加先下降后上升。3)增温显著提高了泡泡刺、梭梭和柠条的气孔导度和胞间CO2浓度,而柽柳的气孔导度和胞间CO2浓度随增温幅度增加先升后降。4)增温显著提高了梭梭的蒸腾速率,柠条仅在最高温下显著提高,柽柳显著降低,而泡泡刺无显著变化。增温还显著提高了泡泡刺、柽柳和柠条的水分利用效率,但显著降低了梭梭的水分利用效率。4种植物的凌晨水势和正午水势均显著降低。综上所述,荒漠植物对增温表现出较强适应性,其中C4植物比C3植物在高温环境中更具优势。增温条件下,C4植物梭梭的蒸腾速率提高和水势降低有助于其水分吸收,维持光合作用稳定;而C3植物泡泡刺、柽柳和柠条的气孔导度和胞间CO2浓度的增加促进了光合作用。
郭彬, 罗维成, 单立山, 安宁, 刘冰. 模拟增温对河西走廊典型荒漠灌木光合作用的影响[J]. 草业学报, 2025, 34(7): 145-157.
Bin GUO, Wei-cheng LUO, Li-shan SHAN, Ning AN, Bing LIU. Effects of simulated warming on photosynthesis of typical desert shrubs in the Hexi Corridor[J]. Acta Prataculturae Sinica, 2025, 34(7): 145-157.
| 项目Items | T0 | T1 | T2 | T3 |
|---|---|---|---|---|
| 最高温度Maximum temperature | 31.8 | 33.2 | 36.8 | 38.2 |
| 最低温度Minimum temperature | 4.3 | 5.0 | 5.7 | 6.6 |
| 平均温度Average temperature | 20.1 | 21.8 | 22.6 | 23.6 |
表1 植物生长季不同增温处理下空气温度变化
Table 1 Changes in air temperature under different warming treatments during plant growing season (℃)
| 项目Items | T0 | T1 | T2 | T3 |
|---|---|---|---|---|
| 最高温度Maximum temperature | 31.8 | 33.2 | 36.8 | 38.2 |
| 最低温度Minimum temperature | 4.3 | 5.0 | 5.7 | 6.6 |
| 平均温度Average temperature | 20.1 | 21.8 | 22.6 | 23.6 |
土层 Soil layer | 项目 Items | T0 | T1 | T2 | T3 |
|---|---|---|---|---|---|
| 10 cm | 最高温度Maximum temperature | 27.2 | 27.8 | 28.3 | 29.0 |
| 最低温度Minimum temperature | 4.5 | 4.7 | 5.2 | 5.9 | |
| 平均温度Average temperature | 18.1 | 18.7 | 19.3 | 19.9 | |
| 40 cm | 最高温度Maximum temperature | 25.6 | 26.3 | 26.5 | 27.1 |
| 最低温度Minimum temperature | 3.0 | 3.5 | 3.8 | 4.3 | |
| 平均温度Average temperature | 16.4 | 17.2 | 17.6 | 18.2 |
表2 植物生长季不同增温处理下不同土层土壤温度变化
Table 2 Changes in soil temperature in different soil layers under different warming treatments during plant growing season (℃)
土层 Soil layer | 项目 Items | T0 | T1 | T2 | T3 |
|---|---|---|---|---|---|
| 10 cm | 最高温度Maximum temperature | 27.2 | 27.8 | 28.3 | 29.0 |
| 最低温度Minimum temperature | 4.5 | 4.7 | 5.2 | 5.9 | |
| 平均温度Average temperature | 18.1 | 18.7 | 19.3 | 19.9 | |
| 40 cm | 最高温度Maximum temperature | 25.6 | 26.3 | 26.5 | 27.1 |
| 最低温度Minimum temperature | 3.0 | 3.5 | 3.8 | 4.3 | |
| 平均温度Average temperature | 16.4 | 17.2 | 17.6 | 18.2 |
图4 增温对典型荒漠灌木净光合速率的影响*表示该温度下指标值与T0相比差异显著(P<0.05),下同。* indicates a significant difference of the index at this temperature compared to T0 (P<0.05), the same below.
Fig.4 Effects of warming on net photosynthesis rate (Pn) of typical desert shrubs
| 1 | Sun Q H, Kong D X, Miao C Y, et al. Variations in global temperature and precipitation for the period of 1948 to 2010. Environmental Monitoring and Assessment, 2014, 186(9): 5663-5679. |
| 2 | Chapin III F S, Diaz S. Interactions between changing climate and biodiversity: shaping humanity’s future. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(12): 6295-6296. |
| 3 | Kuang X X, Jiao J J. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research-Atmospheres, 2016, 121(8): 3979-4007. |
| 4 | Gray V. Climate change 2007: The physical science basis summary for policymakers. Energy and Environment, 2007, 18(3/4): 433-440. |
| 5 | Cunningham S J, Martin R O, Hojem C L, et al. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of common fiscals. PLoS One, 2013, 8(9): e74613. |
| 6 | Bai W M, Wan S Q, Niu S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 2010, 16(4): 1306-1316. |
| 7 | Fu G, Zhang H R, Sun W. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau. Science of the Total Environment, 2019, 650(Part2): 2666-2673. |
| 8 | Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421(6918): 57-60. |
| 9 | Reyes-Fox M, Steltzer H, Trlica M J, et al. Elevated CO2 further lengthens growing season under warming conditions. Nature, 2014, 510(7504): 259-262. |
| 10 | Crous K Y. Plant responses to climate warming: physiological adjustments and implications for plant functioning in a future, warmer world. American Journal of Botany, 2019, 106(8): 1049-1051. |
| 11 | Smith N G, Dukes J S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biology, 2017, 23(11): 4840-4853. |
| 12 | Zhai B Y, Hu Z Y, Sun S Q, et al. Characteristics of photosynthetic rates in different vegetation types at high-altitude in mountainous regions. Science of the Total Environment, 2024, 907(1): 168071. |
| 13 | Arft A M, Walker M D, Gurevitch J, et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 1999, 69(4): 491-511. |
| 14 | Liu H Y, Mi Z R, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4051-4056. |
| 15 | Gielen B, Naudts K, Dhaese D, et al. Effects of climate warming and species richness on photochemistry of grasslands. Physiologia Plantarum, 2007, 131(2): 251-262. |
| 16 | Malfasi F, Cannone N. Climate warming persistence triggered tree ingression after shrub encroachment in a high alpine tundra. Ecosystems, 2020, 23(8): 1657-1675. |
| 17 | Brigham L M, Esch E H, Kopp C W, et al. Warming and shrub encroachment decrease decomposition in arid alpine and subalpine ecosystems. Arctic, Antarctic, and Alpine Research, 2018, 50(1): e1494941. |
| 18 | Dong X, Li Y H, Xin Z M, et al. Gobi shrub species diversity and its distribution pattern in west Hexi Corridor. Arid Land Geography, 2020, 43(6): 1514-1522. |
| 董雪, 李永华, 辛智鸣, 等. 河西走廊西段戈壁灌木群落多样性及其分布格局研究. 干旱区地理, 2020, 43(6): 1514-1522. | |
| 19 | Braun S, Thomas V F D, Quiring R, et al. Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 2010, 158(6): 2043-2052. |
| 20 | Marion G M, Henry G H R, Freckman D W, et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 1997, 3(Supple1): 20-32. |
| 21 | Stenstrom M, Gugerli F, Henry G H R. Response of Saifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology, 1997, 3(Supple1): 44-54. |
| 22 | Li N, Wang G X, Yang Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2011, 31(4): 895-905. |
| 李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31(4): 895-905. | |
| 23 | Wan S Q, Xia J Y, Liu W X, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90(10): 2700-2710. |
| 24 | Xu Z Z, Zhou G S. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil, 2005, 269(1): 131-139. |
| 25 | Llorens L, Penurlas J, Estiarte M. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiologia Plantarum, 2003, 119(2): 231-243. |
| 26 | Feng J, Zhang X F, Dong S K, et al. Effect of climate warming and nitrogen deposition on net photosynthetic rate of alpine plants on Qinghai-Tibet Plateau. Pratacultural Science, 2018, 35(4): 781-790. |
| 冯憬, 张相锋, 董世魁, 等. 增温与氮沉降对高寒植物净光合速率的影响. 草业科学, 2018, 35(4): 781-790. | |
| 27 | Fan Y H, Lv Z Y, Qin B Y, et al. Night warming at the vegetative stage improves pre-anthesis photosynthesis and plant productivity involved in grain yield of winter wheat. Plant Physiology and Biochemistry, 2022, 186(9): 19-30. |
| 28 | Yuan S Y, Xie L J, Ye S Y, et al. Responses of photosynthetic characteristics of Phragmites australis to simulated warming in salt marshes of the Yellow Sea and Bohai Sea, China. Chinese Journal of Applied Ecology, 2023, 34(7): 1825-1833. |
| 袁书禹, 谢柳娟, 叶思源, 等. 黄渤海湿地芦苇光合特征对增温的响应. 应用生态学报, 2023, 34(7): 1825-1833. | |
| 29 | Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 2020, 13(4): 544-564. |
| 30 | Liu T T, Zhu X F, Zhang S Z, et al. Impact of threshold selection on the spatiotemporal change characteristics of high temperature. Scientia Geographica Sinica, 2023, 43(4): 726-736. |
| 刘婷婷, 朱秀芳, 张世喆, 等. 阈值选择对高温时空变化特征的影响. 地理科学, 2023, 43(4): 726-736. | |
| 31 | Zhang Y B, Ma K P. Geographic distribution patterns and status assessment of threatened plants in China. Biodiversity and Conservation, 2008, 17(4): 1783-1798. |
| 32 | Liu Y, Zhang L N, Liu X H, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress. Acta Ecologica Sinica, 2023, 43(24): 10042-10053. |
| 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展. 生态学报, 2023, 43(24): 10042-10053. | |
| 33 | He Y Z, Huang W D, Wang H H, et al. Leaf photosynthetic responses to warming and precipitation reduction of three dominant species in Horqin sandy land. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(4): 684-693. |
| 何远政, 黄文达, 王怀海, 等. 沙质草地3种优势植物叶片光合生理对增温和降水减少的响应. 西北植物学报, 2022, 42(4): 684-693. | |
| 34 | Zhang Y T, Ye W M, Xiong D C, et al. Seasonal dynamics in photosynthetic characteristics and growth of Cunninghamia lanceolata saplings and their response to soil warming. Chinese Journal of Applied Ecology, 2024, 35(1): 195-202. |
| 张雅婷, 叶旺敏, 熊德成, 等. 杉木幼树光合特性与生长的季节变化及其对土壤增温的响应. 应用生态学报, 2024, 35(1): 195-202. | |
| 35 | Xu W H. Bosten Tamarix study photosynthesis characteristics under the gradients of soil water-salt. Urumqi: Xinjiang Normal University, 2016. |
| 徐文海. 水盐梯度下博斯腾湖多枝柽柳光合作用特征研究. 乌鲁木齐: 新疆师范大学, 2016. | |
| 36 | Zhu X C, Song F B, Liu F L, et al. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop and Pasture Science, 2015, 66(1): 62-70. |
| 37 | Yang Y L, Xu J, Huang L C, et al. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 67(5): 1297-1310. |
| 38 | Sun X Z, Zhang L N, Dai Y J, et al. Effect of increased canopy temperature on cotton plant dry matter accumulation and its physiological mechanism. Acta Agronomica Sinica, 2012, 38(4): 683-690. |
| 孙啸震, 张黎妮, 戴艳娇, 等. 花铃期增温对棉花干物重累积的影响及其生理机制. 作物学报, 2012, 38(4): 683-690. | |
| 39 | Ye W M, Xiong D C, Yang Z J, et al. Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings. Acta Ecologica Sinica, 2019, 39(7): 2501-2509. |
| 叶旺敏, 熊德成, 杨智杰, 等. 模拟增温对杉木幼树生长和光合特性的影响. 生态学报, 2019, 39(7): 2501-2509. | |
| 40 | Mei X R, Zhong X L, Liu X Y. Improving water use efficiency of crops by exploring variety differences. Acta Agronomica Sinica, 2013, 39(5): 761-766. |
| 梅旭荣, 钟秀丽, 刘晓英. 探讨品种间差异改良作物水分利用效率. 作物学报, 2013, 39(5): 761-766. | |
| 41 | Yan Y L, Zhang L X, Wan Z Q, et al. Effects of simulated warming and precipitation enhancement on photosynthesis of Stipa krylovii. Acta Prataculturae Sinica, 2016, 25(2): 240-250. |
| 闫玉龙, 张立欣, 万志强, 等. 模拟增温与增雨对克氏针茅光合作用的影响. 草业学报, 2016, 25(2): 240-250. | |
| 42 | Rouhi V, Samson R, Lemeur R, et al. Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental and Experimental Botany, 2007, 59(2): 117-129. |
| 43 | Wang F, Sun Z G, Yin F, et al. Effects of elevated temperature and CO2 on the photosynthetic characteristics of intercropping maize. Scientia Agricultura Sinica, 2021, 54(1): 58-70. |
| 王飞, 孙增光, 尹飞, 等. 增温增CO2对间作玉米光合特性的影响. 中国农业科学, 2021, 54(1): 58-70. | |
| 44 | Sun B Y. Effects of experimental warming on the key processes of carbon cycling in the Yellow River Delta. Shanghai: East China Normal University, 2022. |
| 孙宝玉. 模拟增温对黄河三角洲湿地生态系统碳循环关键过程的影响及机制. 上海: 华东师范大学, 2022. | |
| 45 | Jiang X H, Xie L J, Ye S Y, et al. Responses of photosynthetic characteristics of Phragmites australis and Spartina alterniflora to the simulated warming in Jiangsu coastal wetlands. Acta Ecologica Sinica, 2022, 42(19): 7760-7772. |
| 江星浩, 谢柳娟, 叶思源, 等. 江苏滨海湿地芦苇和互花米草光合特性对模拟增温的响应. 生态学报, 2022, 42(19): 7760-7772. | |
| 46 | Xu B H. Effect of soil depth on the cold and drought resistance of Parthenocissus quinquefolia and Pueraria montana. Baoding: Hebei Agricultural University, 2022. |
| 许北华. 土层厚度对五叶地锦和葛的抗寒、抗旱能力的影响. 保定: 河北农业大学, 2022. | |
| 47 | Wang S Q, Zhou G S, Zhou M Z, et al. Photosynthetically physiological mechanism of Stipa krylovii withered and yellow phenology response to precipitation under the background of warming. Chinese Journal of Applied Ecology, 2021, 32(3): 845-852. |
| 王思琪, 周广胜, 周梦子, 等. 增温背景下克氏针茅枯黄期物候对降水响应的光合生理机制. 应用生态学报, 2021, 32(3): 845-852. | |
| 48 | Gao G R. The physiological and molecular mechanism of Hippophae rhamnoides in response to drought stress and rehydration. Beijing: Chinese Academy of Forestry, 2019. |
| 高国日. 沙棘对干旱胁迫和复水响应的生理及分子机制. 北京: 中国林业科学研究院, 2019. | |
| 49 | Li W B, Zhang H X, Zhang Y S, et al. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai mountains, China. Chinese Journal of Plant Ecology, 2023, 47(9): 1225-1233. |
| 李伟斌, 张红霞, 张玉书, 等. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响. 植物生态学报, 2023, 47(9): 1225-1233. | |
| 50 | Dwivedi S K, Basu S, Kumar S, et al. Enhanced antioxidant enzyme activities in developing anther contributes to heat stress alleviation and sustains grain yield in wheat. Functional Plant Biology, 2019, 46(12): 1090-1102. |
| [1] | 刘昌壮, 陶雨朝, 李明, 张小明. 硫酸锰对盐碱胁迫下栽培稗幼苗光合与氮代谢的影响[J]. 草业学报, 2024, 33(12): 84-98. |
| [2] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [3] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
| [4] | 郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100. |
| [5] | 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响[J]. 草业学报, 2023, 32(3): 13-29. |
| [6] | 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83. |
| [7] | 高玮, 受娜, 蒋丛泽, 马仁诗, 沈禹颖, 杨宪龙. 施氮量对饲用高粱干物质积累、分配及水分利用效率的影响[J]. 草业学报, 2022, 31(9): 26-35. |
| [8] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
| [9] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
| [10] | 韩云华, 米素娟, 石晓琪, 钟天航. 纳米粒子的植物促生效应[J]. 草业学报, 2022, 31(11): 204-213. |
| [11] | 陈林, 陈高路, 宋乃平, 李学斌, 万红云, 何文强. 宁夏东部荒漠草原猪毛蒿光合特征和水分利用效率对降水变化的响应[J]. 草业学报, 2022, 31(10): 87-98. |
| [12] | 张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J]. 草业学报, 2022, 31(1): 229-237. |
| [13] | 赵利清, 彭向永, 刘俊祥, 毛金梅, 孙振元. GSH对铅胁迫下多年生黑麦草生长及光合生理的影响[J]. 草业学报, 2021, 30(9): 97-104. |
| [14] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
| [15] | 汪辉, 田浩琦, 毛培胜, 刘文辉, 贾志锋, 魏露萍, 周青平. 植物非叶绿色器官光合特征研究进展[J]. 草业学报, 2021, 30(10): 191-200. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||