欢迎访问《草业学报》官方网站,今天是

草业学报 ›› 2025, Vol. 34 ›› Issue (11): 217-226.DOI: 10.11686/cyxb2024396

• 综合评述 • 上一篇    

基于天然草地12种根茎禾草种群构件年龄结构与衰老过程的趋同适应普遍模式

韩大勇1(), 杨允菲1,2(), 李海燕2, 张维1   

  1. 1.新疆薰衣草资源保护与利用重点实验室,伊犁师范大学生物科学与技术学院,新疆 伊宁 835000
    2.植被生态科学教育部重点实验室,东北师范大学草地科学研究所,吉林 长春 130024
  • 收稿日期:2024-10-13 修回日期:2025-02-19 出版日期:2025-11-20 发布日期:2025-10-09
  • 通讯作者: 杨允菲
  • 作者简介:E-mail: yangyf@mail.nenu.edu.cn
    韩大勇(1978-),男,吉林榆树人,教授,博士。E-mail: 411430667@qq.com
  • 基金资助:
    国家自然科学基金项目(32171682);国家自然科学基金项目(31472134);国家自然科学基金项目(31170504);国家自然科学基金项目(30770397);国家自然科学基金项目(30270260);国家自然科学基金项目(30070137);国家自然科学基金项目(39770536)

Universal models of convergent adaptation based on the age structure and senescence process of population modules of 12 rhizomatous grass species in natural grassland, China

Da-yong HAN1(), Yun-fei YANG1,2(), Hai-yan LI2, Wei ZHANG1   

  1. 1.Xinjiang Key Laboratory of Lavender Conservation and Utilization,School of Biological Science and Technology,Yili Normal University,Yining 835000,China
    2.Key Laboratory of Vegetation Ecology,Ministry of Education,Institute of Grassland Science,Northeast Normal University,Changchun 130024,China
  • Received:2024-10-13 Revised:2025-02-19 Online:2025-11-20 Published:2025-10-09
  • Contact: Yun-fei YANG

摘要:

根茎禾草是典型的无性系植物,其生活型为地下芽植物,也是北方草原广泛分布的优势植物。将多种根茎禾草研究的零散报道加以集成,从其共同特征中寻找普遍模式,揭示同一生活型植物趋同适应的生物学与生态学机理及进化意义。在近30年相关研究成果中,选用具代表性并且数据丰富的12种根茎禾草,每种均选用放牧场、割草场和围栏封育草地3种利用方式,进行了种群构件年龄结构与衰老过程的比较与理论分析。主要发现包括:1)所有12种根茎禾草构件的寿命均具有限性,分蘖节最多可繁殖4个世代,最长寿命为5年,根茎的最长寿命为4年;2)3种构件(分蘖株、根茎和芽)的数量除了个别放牧场为稳定型年龄结构外,其余均为增长型年龄结构;3)分蘖节大多从2龄级开始迅速衰老,根茎的衰老过程相对缓慢。根茎禾草在趋同适应过程中所形成的以根茎芽补充更新1龄级分蘖株的繁殖方式,具有两个进化意义:对于个体,成功地实现了种子实生苗一旦定居,其基株基因便长寿乃至永生的进化极致;对于种群,不仅维持了构件的增长型年龄结构,也扩展了生长空间,减少了根茎芽形成的分蘖株与亲株分蘖节芽形成的不同龄级分蘖株之间的竞争。这些适应对种群的生存与发展具有重要的进化意义。

关键词: 生活型, 无性系植物, 营养繁殖, 构件, 年龄谱, 分蘖株生产力, 根茎贮藏力

Abstract:

Rhizomatous grasses are typical clonal plants with a geophytic life form, often found as dominant species widely distributed in China’s northern grasslands. This study synthesizes fragmented research findings on various rhizomatous grasses, identifies common patterns from their shared characteristics, and elucidates the biological, ecological, and evolutionary mechanisms underlying the convergent adaptation of plants with the same life form. Based on three decades of related research, 12 representative rhizomatous grass species with robust datasets were selected. For each species, three land-use types: grazed pasture, mown meadow, and fenced grassland, were analyzed to compare and theoretically interpret the age structure and senescence processes of population modules. Key findings include: 1) All 12 species exhibit finite lifespans in their modules. Tiller nodes can reproduce up to four generations, with a maximum lifespan of five years, while rhizomes have a maximum lifespan of four years. 2) The age structures of three module categories (tillers, rhizomes, and buds) are predominantly expanding type, except in some cases in grazed pastures where stable age structures are observed. 3) Senescence in tiller nodes accelerates significantly from the second age class, whereas rhizome senescence progresses more gradually. The convergent adaptation of rhizomatous grasses has led to a reproductive strategy wherein rhizome buds replenish first-age-class tillers. This strategy achieves two evolutionary milestones: for individuals, once seedlings establish, the genetic lineage of the maternal plant attains longevity or even virtual immortality. For populations, it sustains expanding age structures in modules, expands spatial occupancy, and reduces competition between tillers derived from rhizome buds and those from parental tiller node buds of varying age classes. These adaptations hold critical evolutionary significance for population survival and proliferation.

Key words: life-form, clonal plants, vegetative propagation, modules, age spectrum, tiller productivity, rhizome storage capacity