草业学报 ›› 2024, Vol. 33 ›› Issue (11): 186-197.DOI: 10.11686/cyxb2023479
• 研究论文 • 上一篇
常怡然1(), 史佳梅1, 许冬梅1,2(), 康如龙1, 马媛1
收稿日期:
2023-12-13
修回日期:
2024-01-12
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
许冬梅
作者简介:
E-mail: nxxudongmei@163.com基金资助:
Yi-ran CHANG1(), Jia-mei SHI1, Dong-mei XU1,2(), Ru-long KANG1, Yuan MA1
Received:
2023-12-13
Revised:
2024-01-12
Online:
2024-11-20
Published:
2024-09-09
Contact:
Dong-mei XU
摘要:
为了解荒漠草原蒙古冰草是否可以通过调整不同构件生物量及养分分配适应环境的变化,本研究基于宁夏盐池县自南向北气候由半干旱向干旱过渡、地形由黄土丘陵向鄂尔多斯缓坡丘陵过渡的自然特征,考虑到降水和土壤的时空变异,分别选取盐池县大水坑镇、青山乡、花马池镇和高沙窝镇不同自然种群的蒙古冰草为对象(分别以D、Q、H和G种群表示),研究了其个体生物量及养分在根、茎、叶、穗各构件的分配和权衡关系,以探讨蒙古冰草对荒漠草原异质生境的资源权衡适应策略。结果表明:1)H种群的蒙古冰草个体总生物量和根冠比分别为24.69 g·株-1和0.85,显著高于D、Q和G种群(P<0.05);除H种群外,其他种群的蒙古冰草构件生物量均表现为茎>根>穗>叶。2)不同自然种群的蒙古冰草叶-穗、叶-根之间均呈显著的异速生长关系,在D和H种群中各构件生物量累积速率表现为根>叶>穗>茎。3)蒙古冰草各构件氮含量和N/P以H种群较高,C/N则以H种群较低;碳、氮、磷含量在各自然种群均以根部最低,N/P以叶部最高,C/N、C/P以茎部最高(P<0.05)。4)蒙古冰草主要通过根、茎、叶之间的生物量权衡、叶部碳含量和C/P、穗部氮含量的可塑性变化适应环境的改变,土壤全氮和全钾是影响其生物量和养分分配的主要环境因子。综上所述,荒漠草原蒙古冰草各构件之间的资源权衡和异速生长关系有其固有的特征,同时,其在一定程度上又可以调节自身资源分配以应对特化的生境,体现了不同自然种群对异质环境的可塑性适应对策。
常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197.
Yi-ran CHANG, Jia-mei SHI, Dong-mei XU, Ru-long KANG, Yuan MA. Trade-off relationships between biomass and nutrient allocation in different natural populations of Agropyron mongolicum on the desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(11): 186-197.
指标 Index | 不同自然种群所在样地Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
经度Longitude (E) | 106°58′04″ | 107°01′28″ | 107°16′48″ | 107°00′06″ |
纬度Latitude (N) | 37°24′54″ | 37°30′50″ | 37°45′42″ | 37°55′47″ |
海拔Altitude (m) | 1515.2 | 1462.0 | 1395.2 | 1386.5 |
多年平均降水量Average annual precipitation (mm) | 340.6 | 266.0 | 304.7 | 231.7 |
平均植被盖度Average vegetation coverage (%) | 71.93 | 65.53 | 67.27 | 56.67 |
表1 不同自然种群蒙古冰草所处样地概况
Table 1 General situation for the plots of A. mongolicum of different natural populations
指标 Index | 不同自然种群所在样地Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
经度Longitude (E) | 106°58′04″ | 107°01′28″ | 107°16′48″ | 107°00′06″ |
纬度Latitude (N) | 37°24′54″ | 37°30′50″ | 37°45′42″ | 37°55′47″ |
海拔Altitude (m) | 1515.2 | 1462.0 | 1395.2 | 1386.5 |
多年平均降水量Average annual precipitation (mm) | 340.6 | 266.0 | 304.7 | 231.7 |
平均植被盖度Average vegetation coverage (%) | 71.93 | 65.53 | 67.27 | 56.67 |
指标 Index | 不同自然种群所在样地 Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
土壤含水量 Soil moisture content (%) | 6.68±1.10a | 5.01±1.00b | 5.90±2.13ab | 4.93±1.08b |
黏粒 Soil clay content (%) | 2.12±0.61a | 2.72±0.61a | 2.47±0.39a | 1.96±0.31a |
粉粒 Soil silt content (%) | 50.90±0.78ab | 50.32±0.21b | 54.10±1.12a | 51.98±1.59ab |
砂粒 Soil sand content (%) | 46.98±1.36a | 46.96±0.82a | 43.43±1.47a | 46.06±1.88a |
土壤全碳 Soil total carbon (g·kg-1) | 11.56±1.14a | 7.55±0.95b | 12.12±0.48a | 6.96±0.11b |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.27±0.01b | 0.21±0.01c | 0.33±0.03a | 0.23±0.02bc |
土壤全磷Soil total phosphorus (g·kg-1) | 0.22±0.01b | 0.22±0.01b | 0.27±0.01a | 0.25±0.01ab |
土壤全钾 Soil total potassium (g·kg-1) | 19.89±0.15b | 24.83±0.18a | 24.87±0.43a | 20.86±0.02b |
表2 不同自然种群所在样地土壤理化性状
Table 2 Soil physical and chemical properties for the plots of different natural populations
指标 Index | 不同自然种群所在样地 Plots of different natural populations | |||
---|---|---|---|---|
D | Q | H | G | |
土壤含水量 Soil moisture content (%) | 6.68±1.10a | 5.01±1.00b | 5.90±2.13ab | 4.93±1.08b |
黏粒 Soil clay content (%) | 2.12±0.61a | 2.72±0.61a | 2.47±0.39a | 1.96±0.31a |
粉粒 Soil silt content (%) | 50.90±0.78ab | 50.32±0.21b | 54.10±1.12a | 51.98±1.59ab |
砂粒 Soil sand content (%) | 46.98±1.36a | 46.96±0.82a | 43.43±1.47a | 46.06±1.88a |
土壤全碳 Soil total carbon (g·kg-1) | 11.56±1.14a | 7.55±0.95b | 12.12±0.48a | 6.96±0.11b |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.27±0.01b | 0.21±0.01c | 0.33±0.03a | 0.23±0.02bc |
土壤全磷Soil total phosphorus (g·kg-1) | 0.22±0.01b | 0.22±0.01b | 0.27±0.01a | 0.25±0.01ab |
土壤全钾 Soil total potassium (g·kg-1) | 19.89±0.15b | 24.83±0.18a | 24.87±0.43a | 20.86±0.02b |
种群 Population | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | 穗生物量 Spike biomass | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 个体总生物量 Total biomass |
---|---|---|---|---|---|---|
D | 12.57±1.45Aa | 1.27±0.07Ab | 2.42±0.25Ab | 16.26±1.73A | 3.11±0.32Bb | 19.38±2.01B |
Q | 6.10±0.86Ba | 0.56±0.14Bc | 1.31±0.28Bb | 7.97±1.08B | 2.37±0.42Bb | 10.34±1.34BC |
H | 10.09±1.42Aa | 1.39±0.13Ab | 1.84±0.41ABb | 13.33±1.89A | 11.36±1.56Aa | 24.69±3.01A |
G | 2.39±0.74Ba | 0.34±0.01Bb | 0.58±0.25Cb | 3.31±0.07B | 2.13±0.40Ba | 5.44±0.39C |
表3 不同自然种群蒙古冰草各构件生物量
Table 3 Component biomass of A. mongolicum for different natural populations (g·plant-1)
种群 Population | 茎生物量 Stem biomass | 叶生物量 Leaf biomass | 穗生物量 Spike biomass | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 个体总生物量 Total biomass |
---|---|---|---|---|---|---|
D | 12.57±1.45Aa | 1.27±0.07Ab | 2.42±0.25Ab | 16.26±1.73A | 3.11±0.32Bb | 19.38±2.01B |
Q | 6.10±0.86Ba | 0.56±0.14Bc | 1.31±0.28Bb | 7.97±1.08B | 2.37±0.42Bb | 10.34±1.34BC |
H | 10.09±1.42Aa | 1.39±0.13Ab | 1.84±0.41ABb | 13.33±1.89A | 11.36±1.56Aa | 24.69±3.01A |
G | 2.39±0.74Ba | 0.34±0.01Bb | 0.58±0.25Cb | 3.31±0.07B | 2.13±0.40Ba | 5.44±0.39C |
图1 不同自然种群蒙古冰草构件生物量分配特征图a中不同大写字母表示同一构件不同自然种群之间差异显著(P<0.05);不同小写字母表示同一种群不同构件之间差异显著(P<0.05),下同。图b中不同小写字母表示不同自然种群之间差异显著(P<0.05)。In the figure a, the different capital letters in the same component indicate significant differences among different natural populations at 0.05 level; Different lowercase letters in the same population indicate significant differences among different components at 0.05 level, the same below. In the figure b, the different lowercase letters indicate significant differences among different natural populations at 0.05 level.
Fig.1 Component biomass allocation of A. mongolicum for different natural populations
图2 不同自然种群蒙古冰草各构件之间的异速生长关系b表示线性关系的斜率,P表示方程拟合的显著性,P1表示异速生长指数与理论值1.0的差异显著性。b denotes the slope of the linear relationship, P denotes the significance of the equation fit, P1 indicates the significance of the difference between the allometric index and the theoretical value of 1.0.
Fig.2 Component allometric relationship of A. mongolicum for different natural populations
种群Population | 构件Component | 碳储量Carbon storage | 氮储量Nitrogen storage | 磷储量Phosphorus storage |
---|---|---|---|---|
D | 根Root | 755.91±80.03Bb | 12.54±1.73Bc | 0.97±0.10Bb |
茎Stem | 8037.88±850.99Aa | 52.89±5.47Aa | 3.90±0.39Aa | |
叶Leaf | 811.28±40.48Ab | 21.91±1.01Abc | 1.18±0.03Ab | |
穗Spike | 1478.49±152.74Ab | 37.12±3.30Ab | 3.53±0.42Aa | |
Q | 根Root | 574.86±135.25Bb | 8.95±1.63Bb | 0.80±0.14Bb |
茎Stem | 3878.47±533.75Ba | 23.56±3.51Ba | 1.94±0.35Ba | |
叶Leaf | 358.08±91.59Bb | 8.86±2.51Bb | 0.53±0.14Bb | |
穗Spike | 804.35±180.71Bb | 16.80±2.68Bab | 1.60±0.28Ba | |
H | 根Root | 2489.87±158.46Ab | 43.20±4.09Ab | 3.42±0.13Aa |
茎Stem | 6492.72±994.74Aa | 67.76±9.82Aa | 3.84±0.45Aa | |
叶Leaf | 1008.27±117.61Ab | 28.45±3.64Ab | 1.29±0.18Ab | |
穗Spike | 1100.17±235.92ABb | 28.13±5.36ABb | 2.29±0.61ABb | |
G | 根Root | 500.24±51.88Bb | 9.11±1.00Ba | 0.79±0.16Ba |
茎Stem | 1507.66±460.74Ba | 17.09±6.17Ba | 1.62±0.84Ba | |
叶Leaf | 216.98±5.95Bb | 7.37±0.71Ba | 0.41±0.06Ba | |
穗Spike | 357.09±160.08Bb | 8.31±3.53Ba | 0.78±0.36Ca |
表4 不同自然种群蒙古冰草各构件营养物质储量
Table 4 Component nutrient storage of A. mongolicum for different natural populations (g·m-2)
种群Population | 构件Component | 碳储量Carbon storage | 氮储量Nitrogen storage | 磷储量Phosphorus storage |
---|---|---|---|---|
D | 根Root | 755.91±80.03Bb | 12.54±1.73Bc | 0.97±0.10Bb |
茎Stem | 8037.88±850.99Aa | 52.89±5.47Aa | 3.90±0.39Aa | |
叶Leaf | 811.28±40.48Ab | 21.91±1.01Abc | 1.18±0.03Ab | |
穗Spike | 1478.49±152.74Ab | 37.12±3.30Ab | 3.53±0.42Aa | |
Q | 根Root | 574.86±135.25Bb | 8.95±1.63Bb | 0.80±0.14Bb |
茎Stem | 3878.47±533.75Ba | 23.56±3.51Ba | 1.94±0.35Ba | |
叶Leaf | 358.08±91.59Bb | 8.86±2.51Bb | 0.53±0.14Bb | |
穗Spike | 804.35±180.71Bb | 16.80±2.68Bab | 1.60±0.28Ba | |
H | 根Root | 2489.87±158.46Ab | 43.20±4.09Ab | 3.42±0.13Aa |
茎Stem | 6492.72±994.74Aa | 67.76±9.82Aa | 3.84±0.45Aa | |
叶Leaf | 1008.27±117.61Ab | 28.45±3.64Ab | 1.29±0.18Ab | |
穗Spike | 1100.17±235.92ABb | 28.13±5.36ABb | 2.29±0.61ABb | |
G | 根Root | 500.24±51.88Bb | 9.11±1.00Ba | 0.79±0.16Ba |
茎Stem | 1507.66±460.74Ba | 17.09±6.17Ba | 1.62±0.84Ba | |
叶Leaf | 216.98±5.95Bb | 7.37±0.71Ba | 0.41±0.06Ba | |
穗Spike | 357.09±160.08Bb | 8.31±3.53Ba | 0.78±0.36Ca |
图4 蒙古冰草构件生物量、营养参数及其与土壤因子的冗余分析RB: 根生物量Root biomass; SB: 茎生物量Stem biomass; LB: 叶生物量Leaf biomass; SC: 茎部碳含量Stem carbon content; LC: 叶部碳含量Leaf carbon content; EC: 穗部碳含量Spike carbon content; EN: 穗部氮含量Spike nitrogen content; R/S: 根冠比Root-shoot ratio; RP: 根部磷含量Root phosphorus content; RN/P: 根部N/P Root N/P; SC/N: 茎部C/N Stem C/N; LC/P: 叶部C/P Leaf C/P; LC/N: 叶部C/N Leaf C/N; STC: 土壤全碳Soil total carbon; STN: 土壤全氮Soil total nitrogen; STP: 土壤全磷Soil total phosphorus; STK: 土壤全钾Soil total potassium; SWC: 土壤含水量Soil water content; Cl: 黏粒Soil clay content; Si: 粉粒Soil silt content; Sa: 砂粒Soil sand content.
Fig.4 Redundancy analysis of component biomass, nutrition index and soil factors of A. mongolicum
环境因子 Environmental factor | 解释量 Explains (%) | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
土壤全氮 Soil total nitrogen | 39.3 | 45.5 | 6.5 | 0.010** |
土壤全钾 Soil total potassium | 27.7 | 32.1 | 7.5 | 0.022* |
土壤全碳 Soil total carbon | 4.0 | 4.7 | 1.1 | 0.314 |
砂粒 Soil sand content | 7.1 | 8.2 | 2.3 | 0.132 |
土壤含水量 Soil water content | 6.9 | 7.9 | 2.7 | 0.090 |
黏粒 Soil clay content | 1.1 | 1.3 | 0.4 | 0.772 |
土壤全磷Soil total phosphorus | 0.3 | 0.3 | <0.1 | 0.980 |
粉粒 Soil silt content | <0.1 | <0.1 | <0.1 | 1.000 |
表5 冗余分析排序及蒙特卡洛置换检验结果
Table 5 Results by redundancy analysis ordination with the first two axes and Monte Carlo permutation test
环境因子 Environmental factor | 解释量 Explains (%) | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
土壤全氮 Soil total nitrogen | 39.3 | 45.5 | 6.5 | 0.010** |
土壤全钾 Soil total potassium | 27.7 | 32.1 | 7.5 | 0.022* |
土壤全碳 Soil total carbon | 4.0 | 4.7 | 1.1 | 0.314 |
砂粒 Soil sand content | 7.1 | 8.2 | 2.3 | 0.132 |
土壤含水量 Soil water content | 6.9 | 7.9 | 2.7 | 0.090 |
黏粒 Soil clay content | 1.1 | 1.3 | 0.4 | 0.772 |
土壤全磷Soil total phosphorus | 0.3 | 0.3 | <0.1 | 0.980 |
粉粒 Soil silt content | <0.1 | <0.1 | <0.1 | 1.000 |
1 | Penuelas J, Janssens I A, Ciais P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 2020, 26(4): 1962-1985. |
2 | Ma Z, Liu H, Mi Z, et al. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8: 15378. |
3 | Zhou Y, Ma H, Lu Q, et al. Different responses of leaf and root economics spectrum to grazing time at the community level in desert steppe, China. Science of the Total Environment, 2024, 909: 168547. |
4 | Li X, Song Z, Hu Y, et al. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. Science of the Total Environment, 2024, 906: 167449. |
5 | Huang X Y, Chen Z, Huang M Y, et al. Functional traits of woody plants along the environmental gradients in eastern Tibet. Acta Ecologica Sinica, 2022, 42(22): 8964-8976. |
黄汐月, 陈卓, 黄梦月, 等. 藏东木本植物群落功能性状分布与环境的关系. 生态学报, 2022, 42(22): 8964-8976. | |
6 | Freschet G T, Swart E M, Cornelissen J H. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 2015, 206(4): 1247-1260. |
7 | Raza M A, Bin K M, Zhang X, et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Scientific Reports, 2019, 9(1): 4947. |
8 | He Y Y, Guo S L, Wang Z. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035. |
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43(12): 1021-1035. | |
9 | Li S J, Wang Z H, Su P X, et al. Research progress on the trade-off strategy and functional diversity of desert plants. Acta Ecologica Sinica, 2022, 42(18): 7308-7320. |
李善家, 王子濠, 苏培玺, 等. 荒漠植物性状权衡策略及功能多样性研究进展. 生态学报, 2022, 42(18): 7308-7320. | |
10 | Chai Y F, Zhong J Y, Zhao J L, et al. Environment and plant traits explain shrub biomass allocation and species composition across ecoregions in North China. Journal of Vegetation Science, 2021, 2: e13080. |
11 | Ali S, Hafeez A, Ma X L, et al. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129: 231-241. |
12 | Erfan A, Li J, Zhuang W W. Relationship between habitat soil factor and stoichiometric characteristics of two kinds of desert leguminous plants. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(8): 1384-1395. |
依里帆·艾克拜尔江, 李进, 庄伟伟. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系. 西北植物学报, 2022, 42(8): 1384-1395. | |
13 | Freschet G T, Violle C, Bourget M Y, et al. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 2018, 219(4): 1338-1352. |
14 | Yan B G, Fan B, He G X, et al. Biomass allocations and their response to environmental factors for grass species in an arid-hot valley. Chinese Journal of Applied Ecology, 2016, 27(10): 3173-3181. |
闫帮国, 樊博, 何光熊, 等. 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 2016, 27(10): 3173-3181. | |
15 | Zhang K, Su Y, Yang R. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China. Journal of Plant Research, 2017, 130(4): 699-708. |
16 | Jin Y, Tian D, Li J, et al. Water causes divergent responses of specific carbon sink to long-term grazing in a desert grassland. Science of the Total Environment, 2023, 873: 162166. |
17 | Han H, Liu W, Lu Y, et al. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta, 2017, 245(2): 425-437. |
18 | Xu A Y, Wang X, Wang X J, et al. Agropyron mongolicum Keng’s growth in response to nitrogen addition is linked to root morphological traits and nitrogen-use efficiency. Agronomy Journal, 2022, 12(5): 1146. |
19 | Du J, Li X, Li T, et al. Genome-wide transcriptome profiling provides overwintering mechanism of Agropyron mongolicum. BMC Plant Biology, 2017, 17(1): 138. |
20 | Li X Q, Gao Y H, Liu Y, et al. The genetic diversity of 9 populations of dry-desert Agropyron mongolicun collected in northern China. Acta Prataculturae Sinica, 2016, 25(3): 77-85. |
李晓全, 高有汉, 刘扬, 等. 我国北方9份旱生-沙生植物蒙古冰草遗传多样性研究. 草业学报, 2016, 25(3): 77-85. | |
21 | Li Y F, Zhang X, Liu Z X, et al. Response of functional traits and rhizosphere effects of Agropyron mongolicum to soil properties in desert steppe of Ningxia. Acta Ecologica Sinica, 2023, 43(21): 8683-8691. |
李云飞, 张雪, 刘智贤, 等. 宁夏荒漠草原蒙古冰草功能性状和根际效应对土壤性状的响应. 生态学报, 2023, 43(21): 8683-8691. | |
22 | Fan B B, Sun F C, Yu Z, et al. Corrigendum: Integrated analysis of small RNAs, transcriptome and degradome sequencing reveal the drought stress network in Agropyron mongolicum Keng. Frontiers in Plant Science, 2023, 14: 1152603. |
23 | Jia Z F, Ma X, Lei S C, et al. Effects of fertilization on vegetation characteristics of light degraded meadow in Guinan county. Acta Agrestia Sinica, 2019, 27(4): 987-996. |
贾志锋, 马祥, 雷生春, 等. 施肥对贵南县轻度退化草甸植被特征的影响.草地学报, 2019, 27(4): 987-996. | |
24 | Bao S D. Agrochemical analysis of soil. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
25 | Yue K, Fornara D A, Li W, et al. Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe. Journal of Plant Ecology, 2021, 14(3): 361-371. |
26 | Rutger A W, Mark V K. Drought alters plant-soil feedback effects on biomass allocation but not on plant performance. Plant and Soil, 2021, 462(1/2): 1-12. |
27 | McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 2007, 21(4): 713-720. |
28 | Rogério P S, Adalton M F. Phosphorus effects on biomass accumulation and nutrient uptake and rmoval in two potato cultivars. Agronomy Journal, 2016, 108(3): 1225-1236. |
29 | Peng L, Xu X, Liao X, et al. Ampelocalamus luodianensis (Poaceae), a plant endemic to karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation. Global Ecology and Conservation, 2023, 41: e02374. |
30 | Qi Y L, Wei W, Chen C G, et al. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 2019, 18: e00606. |
31 | Shi J M. Study on phenotypic traits and ecophysiological adaptation strategies of Agropyron mongolicum under heterogeneous habitats. Yinchuan: Ningxia University, 2022. |
史佳梅. 异质生境下蒙古冰草表型性状及生理生态适应策略研究. 银川: 宁夏大学, 2022. | |
32 | Chen S, Chen L, Tang J R, et al. Biomass allocation and allometric growth of Pinus yunnanensis seedings of different classes. Journal of Sichuan Agricultural University, 2023, 41(2): 209-216, 256. |
陈诗, 陈林, 唐军荣, 等. 云南松不同等级苗木的生物量分配及其异速生长. 四川农业大学学报, 2023, 41(2): 209-216, 256. | |
33 | Yang Y, Fang J, Ma W, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 2010, 19(2): 268-277. |
34 | Gong L, Zhai W, Lyu D, et al. Variations and trade-offs in reproductive organ traits of an invasive plant Plantago virginica in different habitats. Bulletin of Botanical Research, 2022, 42(4): 544-555. |
龚莉, 翟伟, 吕丹, 等. 不同生境入侵植物北美车前繁殖器官性状变异与权衡特征. 植物研究, 2022, 42(4): 544-555. | |
35 | Li Y K, Liu J L, Xu D M, et al. Resource allocation characteristics of Agropyron mongolicum in the desert steppe in Ningxia. Acta Agrestia Sinica, 2023, 31(4): 1125-1133. |
李永康, 刘金龙, 许冬梅, 等. 宁夏荒漠草原蒙古冰草资源分配特征. 草地学报, 2023, 31(4): 1125-1133. | |
36 | Wang D, Li J F, Li Y Q, et al. Allometric growth and phenotypic plasticity of Pinus yunnanensis at different seedling ages. Journal of Central South University of Forestry & Technology, 2022, 42(1): 36-44. |
王丹, 李江飞, 李亚麒, 等. 不同苗龄云南松异速生长及其表型可塑性. 中南林业科技大学学报, 2022, 42(1): 36-44. | |
37 | Shen Y, Gilbert G S, Li W, et al. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Frontiers in Plant Science, 2019, 10: 1412. |
38 | Minden V, Kleyer M. Internal and external regulation of plant organ stoichiometry. Plant Biology, 2014, 16(5): 897-907. |
39 | Malgwi O D, Odunze A C, Otene I J J, et al. Carbon, nitrogen, and phosphorus stocks from fallow of forage legumes on alfisols of Guinea Savanna Nigeria. World Journal of Agricultural Research, 2019, 7(4): 119-123. |
40 | Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006. |
41 | Li D F, Yu S L, Wang G X, et al. Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau. Chinese Journal of Plant Ecology, 2015, 39(5): 453-465. |
李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 2015, 39(5): 453-465. | |
42 | Wang L, Zhang G, Zhu P, et al. Correlations between plant and soil for their C, N, P contents and stoichiometry on the steep gully slopes. Ecological Indicators, 2023, 154: 110545. |
43 | Liu Z Y, Baoyin T G, Sun J, et al. Plant sizes mediate mowing-induced changes in nutrient stoichiometry and allocation of a perennial grass in semi-arid grassland. Ecology and Evolution, 2018, 8(6): 3109-3118. |
44 | He M, Dijkstra F A, Zhang K, et al. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 2016, 398(1/2): 339-350. |
45 | Liu Y Z, Liu W T, Yang X X, et al. Effects of livestock grazing on the C∶N∶P stoichiometry in global grassland ecosystems: A meta analysis. Chinese Journal of Applied Ecology, 2022, 33(5): 1251-1259. |
刘玉祯, 刘文亭, 杨晓霞, 等. 放牧对全球草地生态系统碳氮磷化学计量特征影响的Meta分析. 应用生态学报, 2022, 33(5): 1251-1259. | |
46 | Gass T M, Binkley D. Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. The Journal of Applied Ecology, 2011, 48(4): 952-960. |
47 | Han M Q, Pan Z L, Jin Y X, et al. Response of soil nitrogen mineraliztion to different stocking rates on the Stipa breviflora desert steppe. Acta Prataculturae Sinica, 2017, 26(9): 27-35. |
韩梦琪, 潘占磊, 靳宇曦, 等. 短花针茅荒漠草原土壤氮素矿化对载畜率的响应. 草业学报, 2017, 26(9): 27-35. | |
48 | Li Q, Zhao C, Kang M, et al. The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecological Indicators, 2021, 128: 107836. |
49 | Reich P B, Wright I J, Bavender-Bares J, et al. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 2003, 164(Supple3): S143-S164. |
[1] | 贺世龙, 叶贺, 李静, 张雅玲, 德海山, 红梅. 不同时限氮沉降和降水变化对荒漠草原中小型土壤节肢动物群落结构与多样性的影响[J]. 草业学报, 2024, 33(9): 140-154. |
[2] | 曹颖, 聂明鹤, 沈艳, 胡艳, 马登宝, 李东, 候腾思, 方鹏, 王学琴. 宁夏干旱风沙区荒漠草原不同退化阶段植被土壤变化特征及其相关性[J]. 草业学报, 2024, 33(8): 1-14. |
[3] | 候腾思, 沈艳, 马红彬, 方鹏, 曹颖. 柠条平茬对荒漠草原土壤水分特征及水量平衡的影响[J]. 草业学报, 2024, 33(8): 15-24. |
[4] | 佘洁, 沈爱红, 石云, 赵娜, 张风红, 何洪源, 吴涛, 李红霞, 马益婷, 朱晓雯. 基于无人机遥感影像和面向对象技术的荒漠草原植被分类[J]. 草业学报, 2024, 33(7): 1-14. |
[5] | 姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28. |
[6] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
[7] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[8] | 鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106. |
[9] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[10] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[11] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[12] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[13] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[14] | 吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39. |
[15] | 米扬, 郭蓉, 王媛, 王占军, 蒋齐, 俞鸿千, 马琨. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应[J]. 草业学报, 2023, 32(11): 81-92. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||