草业学报 ›› 2011, Vol. 20 ›› Issue (4): 261-269.
刘明稀1,蒋建雄2,易自力2*
收稿日期:
2010-05-20
出版日期:
2011-04-25
发布日期:
2011-08-20
通讯作者:
E-mail:yizili889@163.com
作者简介:
刘明稀(1975-),男,湖南新化人,讲师,博士。E-mail:lmx751221@163.com
基金资助:
LIU Ming-xi1, JIANG Jian-xiong2, YI Zi-li2
Received:
2010-05-20
Online:
2011-04-25
Published:
2011-08-20
摘要: 生物质能源是可再生能源的重要领域。芒属植物是极具开发潜力的生物质能源作物,欧美多国以奇岗(Miscanthus×Giganteus)作为芒属能源作物的代表对其进行了系统广泛的研究。本研究对细胞工程技术在芒属能源作物上的应用进行了总结: 1)离体再生体系建立的相关研究,主要集中于再生体系的愈伤诱导及分化增殖,研究内容涵盖了对组织培养影响重大的主要因素,包括激素、外植体、辅助添加物、培养基成分,甚至碳源的不同灭菌方式等; 2)染色体倍性操作,主要是染色体加倍研究,单倍体育种也有所突破。本研究最后对该领域的发展趋势进行了简要探讨。
中图分类号:
刘明稀,蒋建雄,易自力. 细胞工程技术在芒属能源作物上的应用[J]. 草业学报, 2011, 20(4): 261-269.
LIU Ming-xi, JIANG Jian-xiong, YI Zi-li. Application of cell engineering in improving Miscanthus as a dedicated bioenergy crop[J]. Acta Prataculturae Sinica, 2011, 20(4): 261-269.
[1] IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2001. [2] Hughes E. Biomass cofiring: Economics, policy and opportunities[J]. Biomass & Bioenergy, 2000, 19: 457-465. [3] Venendaal R, Jorgensen U, Foster C. European energy crops: A synthesis[J]. Biomass & Bioenergy, 1997, 13: 147-185. [4] McKendry P. Energy production from biomass (Part1): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46. [5] Hoogwijk M, Faaij A, van den Broek R, et al. Exploration of the ranges of the global potential of biomass for energy[J]. Biomass & Bioenergy, 2003, 25(2): 113-119. [6] Borrero M A V, Pereira J T V, Miranda E E. An environmental management method for sugarcane alcohol production in Brazil[J]. Biomass & Bioenergy, 2003, 25: 287-299. [7] Tyner W E. The US ethanol and biofuels boom: Its origins, current status, and future prospects[J]. Bioscience, 2008, 58: 646-653. [8] 程序. 能源牧草堪当未来生物能源之大任[J]. 草业学报, 2008, 17(3): 1-5. [9] 刘吉利, 朱万斌, 谢光辉, 等. 能源作物柳枝稷研究进展[J]. 草业学报, 2009, 18(3): 232-240. [10] Greef J M, Deuter M. Syntaxonomy of Miscanthus×Giganteus GREEF et DEU[J]. Angewandte Botanik, 1993, 67: 87-90. [11] Clifton-Brown J, Chiang Y-C, Hodkinson T R. Miscanthus: Genetic resources and breeding potential to enhance bioenergy production[A]. In: Vermerris W. Genetic Improvement of Bioenergy Crops[M]. New York: Springer, 2008: 273-294. [12] Visser P, Pignatelli V. Utilisation of Miscanthus[A]. In: Jones M B, Walsh M. Miscanthus for Energy and Fibre[M]. London: James & James Ltd, 2001: 109-154. [13] Naidu S L, Moose S P, AL-Shoaibi A K, et al. Cold tolerance of C4 photosynthesis in Miscanthus×Giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes[J]. Plant Physiology, 2003, 132: 1688-1697. [14] Lewandowski I, Scurlock J M O, Lindvall E, et al. The development and current status of perennial rhizomatousgrasses as energy crops in the US and Europe[J]. Biomass & Bioenergy, 2003, 25: 335-361. [15] Clifton-Brown J C, Lewandowski I. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany[J]. European Journal of Agronomy, 2002, 16: 97-110. [16] Clifton-Brown J C, Breur J, Jones M B. Carbon mitigation by the energy crop, Miscanthus[J]. Global Change Biology, 2007, 13: 2296-2307. [17] Clifton-Brown J C, Lewandowski I, Andersson B, et al. Performance of 15 Miscanthus genotypes at five sites in Europe[J]. Agronomy Journal, 2001, 93: 1013-1019. [18] Faix O, Meier D, Beinhoff O. Analysis of lignocelluloses and lignins from Arundo donax L and Miscanthus sinensis Anderss and hydroliquefaction Miscanthus[J]. Biomass, 1989, 18: 109-126. [19] Heaton E A, Clifton-Brown J, Voigt T B, et al. Miscanthus for renewable energy generation: European Union experience and projections for illinois[J]. Mitigation and Adaptation Strategies for Global Change, 2004, 9(4): 433-451. [20] Yu C Y, Kim H S, Rayburn A L, et al. Chromosome doubling of the bioenergy crop, Miscanthus×Giganteus[J]. GCB Bioenergy, 2009, 1(6): 404-412. [21] Linde-Laursen I B. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecic hybrid[J]. Hereditas, 1993, 119: 297-300. [22] Greef J M, Deuter M, Jung C, et al. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting[J]. Genetic Resources and Crop Evolution, 1997, 44: 185-195. [23] Hodkinson T R, Chase M W, Takahashi C, et al. The use of DNA sequencing (Its and Trnl-F), Aflp and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae)[J]. American Journal of Botany, 2002, 89(2): 279-286. [24] Lewandowski I, Kicherer A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus×Giganteus[J]. European Journal of Agronomy, 1997, 6: 163-177. [25] Lewandowski I, Clifton-Brown J C, Scurlock J M O, et al. Miscanthus: European experience with a novel energy crop[J]. Biomass & Bioenergy, 2000, 19: 209-227. [26] Heaton E A, Dohleman F G, Long S P. Meeting US biofuel goals with less land: The potential of Miscanthus[J]. Global Change Biology, 2008, 14: 2000-2014. [27] Walsh M. Miscanthus Handbook (Eu project FAIR 3-CT96-1707)[M]. Cork, Ireland: Hyperion, 1997. [28] Gawel N J, Robacker C D, Corley W L. In vitro propagation of Miscanthus sinensis[J]. HortScience, 1990, 25: 1291-1293. [29] Nielsen P N. Vegetative propagation of Miscanthus sinensis “Giganteus”[J]. Tidsskrift Planteavl, 1987, 91: 361-368. [30] Nielsen J M, Brandt K, Hansen J. Long-term effects of thidiazuron are intermediate between benzyladenine, kinetin or isopentenyladenine in Miscanthus sinensis[J]. Plant Cell, Tissue and Organ Culture, 1993, 35: 173-179. [31] Nielsen J M, Hansen J, Brandt K. Synergism of thidiazuron and benzyladenine in axillary shoot formation depends on sequence of application in Miscanthus×ogiformis ‘Giganteus’[J]. Plant Cell, Tissue and Organ Culture, 1995, 41: 165-170. [32] Hansen J, Kristiansen K. Short-term in vitro storage of Miscanthus×ogiformis Honda ‘Giganteus’ as affected by medium composition, temperature, and photon flux density[J]. Plant Cell, Tissue and Organ Culture, 1997, 49: 161-169. [33] Lewandowski I, Kahnt G. Development of a tissue culture system with unemerged inflorescences of ‘Giganteus’ for the induction and regeneration of somatic embryoids[J]. Beitrage zur Biologie der Pflanzen, 1993, 67: 439-451. [34] Holme I B, Petersen K K. Callus induction and plant regeneration from different explant types of Miscanthus×ogiformis Honda ‘Giganteus’[J]. Plant Cell, Tissue and Organ Culture, 1996, 45: 43-52. [35] Petersen K K. Callus induction and plant regeneration in Miscanthus×ogiformis Honda‘Giganteus’ as influenced by benzyladenine[J]. Plant Cell, Tissue and Organ Culture, 1997, 49: 137-140. [36] Holme I B, Krogstrup P, Hansen J. Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus×ogiformis Honda ‘Giganteus’ as affected by proline[J]. Plant Cell, Tissue and Organ Culture, 1997, 50: 203-210. [37] Szilárd Tóth, Pál Pepó. Nutrient uptake of Miscanthus in vitrocultures[J]. Journal of Natural Fibers, 2006, 3(1): 17-21. [38] Holme I B. Growth characteristics and nutrient depletion of Miscanthus×ogiformis Honda ‘Giganteus’ suspension cultures[J]. Plant Cell, Tissue and Organ Culture, 1998, 53: 143-151. [39] Petersen K K, Hansen J, Krogstrup P. Significance of different carbon sources and sterilization methods on callus induction and plant regeneration of Miscanthus×ogiformis Honda‘Giganteus’[J]. Plant Cell, Tissue and Organ Culture, 1999, 58: 189-197. [40] Last D I, Brettell R I S. Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium[J]. Plant Cell Reports, 1990, 9: 14-16. [41] Zhou H, Zheng Y, Konzak C F. Osmotic potential of media affecting green plant percentage in wheat anther culture[J]. Plant Cell Reports, 1991, 10: 63-66. [42] DeWet J M J. Origins of polyploids[A]. In: Lewis W H. Polyploidy: Biological Relevance[M]. New York: Plenum Press, 1980: 3-16. [43] Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis[J]. Plant Cell, 2003, 15: 2236-2239. [44] Jrgensen U. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark[J]. Biomass Energy, 1997, 12: 155-169. [45] Petersen K K, Hagberg P, Kristiansen K. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis[J]. Plant Cell, Tissue and Organ Culture, 2003, 73: 137-146. [46] Gowacka K, Jeowski S, Kaczmarek Z. Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species[J]. In Vitro Cellular & Developmental Biology-Plant, 2010, 46(2): 161-171. [47] Thomas H. Chromosome manipulation and polyploidy[A]. In: Hayward M, Bosemark N, Romagosa I. Plant Breeding: Principals and Prospects[M]. London: Chapman and Hall, 1993: 79-92. [48] Nimura M, Kato J, Horaguchi H, et al. Induction of fertile amphidiploids by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb[J]. Breeding Science, 2006, 56: 303-310. [49] Tu S B, Luan L, Liu Y H, et al. Production and heterosis analysis of rice autotetraploid hybrids[J]. Crop Science, 2007, 47: 2356-2363. [50] Miller J S, Venable D L. Polyploidy and the evolution of gender dimorphism in plants[J]. Science, 2000, 289: 2335-2338. [51] Chen Y H, Lo C C, Chen C. Colchicine-induced amphiploids from cell culture of Saccharum-Miscanthus hybrids[J]. Report of the Taiwan Sugar Research Institute, 1992, 136: 1-9. [52] 何立珍, 周朴华, 刘选明, 等. 南荻同源四倍体的研究[J]. 遗传学报, 1997, 24(6): 544-549. [53] Petersen K K, Hagberg P, Kristiansen K. In vitro chromosome doubling of Miscanthus sinensis[J]. Plant Breeding, 2002, 121: 445-450. [54] Gowacka K, Jeowski S, Kaczmarek Z. Polyploidization of Miscanthus sinensis and Miscanthus×Giganteus by plant colchicine treatment[J]. Industrial Crops and Products, 2009, 30: 444-446. [55] Gowacka K, Jeowski S. Genetic and nongenetic factors influencing callus induction in Miscanthus sinensis (Anderss.) anther cultures[J]. Journal of Applied Genetics, 2009, 50(4): 341-345. [56] 高鹤, 宗俊勤, 陈静波, 等. 7种优良观赏草光合生理日变化及光响应特征研究[J]. 草业学报, 2010, 19(4): 87-93. [57] 宁祖林, 陈慧娟, 王珠娜. 几种高大禾草热值和灰分动态变化研究[J]. 草业学报, 2010, 19(2): 241-247. [58] Gowacka K, Jeowski S, Kaczmarek Z. The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species[J]. Plant Cell, Tissue and Organ Culture, 2010, 102(1): 79-86. [59] 易自力, 周朴华, 储成才, 等. 南荻遗传转化系统的建立及转基因植株的获得[J]. 高技术通讯, 2001, 11(4): 20-24. [60] Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annual Review of Ecological Systems, 1998, 29: 467-501. [61] Lewandowski I, Heinz A. Delayed harvest of Miscanthus-influences on biomass quantity and quality and environmental impacts of energy production[J]. European Journal of Agronomy, 2003, 19: 45-63. [62] Lewandowski I. Miscanthus-a multifunctional biomass crop for the future[A]. In: Jeowski S, Wojciechowicz K M, Zenkteler E. Alternative Plants for Sustainable Agriculture[M]. Poznań: Institute of Plant Genetics PAS, 2006: 83-90. [63] Christian D G, Riche A B, Yates N E. Growth, yield and mineral content of Miscanthus×Giganteus grown as a biofuel for 14 successive harvests[J]. Industrial Crops and Products, 2008, 28: 320-327. [64] Jrgensen U, Muhs H. Miscanthus breeding and improvement[A]. In: Jones M B, Walsh M. Miscanthus for Energy and Fibre[M]. London: James & James Ltd, 2001: 109-154. |
[1] | 徐立明,张振葆,梁晓玲,卢文,张辰路,黄凤珠,王雷,张素芝. 植物抗旱基因工程研究进展[J]. 草业学报, 2014, 23(6): 293-303. |
[2] | 宋辉,南志标,蔡小宁,钟小仙,顾洪如. 海滨雀稗液泡膜H+-PPase(PvVP1)5'端的克隆和序列分析[J]. 草业学报, 2014, 23(5): 168-174. |
[3] | 王佳,郑琳琳,顾天培,王学峰,王迎春. 珍稀泌盐植物长叶红砂两个WRKY转录因子的克隆及表达分析[J]. 草业学报, 2014, 23(4): 122-129. |
[4] | 崔同霞,白江平,魏桂民,赵旭,王蒂,张金文. 马铃薯SGT3基因表达及其启动子功能分析[J]. 草业学报, 2014, 23(2): 196-206. |
[5] | 周资行,李真,焦健,李毅,令凡. 腾格里沙漠南缘唐古特白刺克隆分株生长格局及枝系构型分析[J]. 草业学报, 2014, 23(1): 12-21. |
[6] | 王丽,张俊莲,张金文,刘玉汇,白江平,余斌,杨宏羽,王蒂. 拟南芥高亲和性K+载体蛋白基因cDNA克隆及其序列特征分析[J]. 草业学报, 2013, 22(6): 230-238. |
[7] | 郑琳琳,王佳,贺龙梅,王学峰,王迎春. 唐古特白刺蛋白激酶基因NtCIPK2超表达载体构建及紫花苜蓿转化研究[J]. 草业学报, 2013, 22(6): 223-229. |
[8] | 胡可,严雪锋,栗丹,唐晓梅,杨宏,王艳,邓洪渊,马欣荣. 沉默CCR和CAD基因培育低木质素含量转基因多年生黑麦草[J]. 草业学报, 2013, 22(5): 72-83. |
[9] | 崔航,李立颖,谢小林,朱红惠,姚青. 不同基因型柱花草的根系构型差异及其磷效率[J]. 草业学报, 2013, 22(5): 265-271. |
[10] | 郑琳琳,张慧荣,贺龙梅,王迎春. 唐古特白刺质膜Na+/H+逆向转运蛋白基因的克隆与表达分析[J]. 草业学报, 2013, 22(4): 179-186. |
[11] | 孙丽莉,陈志坚,刘攀道,廖红,刘国道,田江. 柱花草磷转运蛋白SgPT1的克隆和表达分析[J]. 草业学报, 2013, 22(4): 187-198. |
[12] | 张乐新,苏蔓,马甜,马兴勇,闫学青,彭献军,陈双燕,程丽琴,刘公社. 羊草Δ1-吡咯琳-5-羧酸合成酶(LcP5CS1)基因的克隆与分析[J]. 草业学报, 2013, 22(4): 197-204. |
[13] | 李剑,张金林,王锁民,郭强. 小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析[J]. 草业学报, 2013, 22(2): 140-149. |
[14] | 刘莹,才华,刘晶,柏锡,纪巍,朱延明. GsCRCK基因转化农菁1号苜蓿及其耐盐性分析[J]. 草业学报, 2013, 22(2): 150-157. |
[15] | 任爱琴,易津,高洪文,李俊,王学敏. 柠条锦鸡儿CkNCED1基因启动子的克隆及表达分析[J]. 草业学报, 2013, 22(2): 165-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||