Reference:[1] Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169. [2] Zhao H L, Liu R T, Zhou R L, et al. Properties and mechanisms of change of soil macro-fauna communities in the desertification process of Horqin sandy grassland[J]. Acta Prataculturae Sinica, 2013, 22(3): 70-77.[3] Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd Edition)[M]. Springer: Verlag Berlin Heidelberg, 2008.[4] Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China[J]. Acta Prataculturae Sinica, 2013, 22(5): 310-325.[5] Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.[6] Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.[7] Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.[8] Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.[9] Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50. [10] Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.[11] Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure[J]. Acta Ecologica Sinica, 2012, 32(3): 863-870.[12] Bao S D. Agrochemical soil analysis (3rd Edition)[M]. Beijing: China Agriculture Press, 2000: 76-79.[13] Shen Y, Yang H L, He W M. Nutrient availability in habitats affects carbon and nitrogen releases of litter in winter wheat[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 498-504.[14] Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.[15] Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.[16] Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.[17] Guan S Y. Soil enzymes and Research Act[M]. Beijing: Agricultural Press, 1986: 260-353.[18] Hazi Y F. Soil enzyme activity[M]. Zheng H Y, Zhou L k, translate. Beijing: Science Press, 1980: 24-75.[19] Lu R K. Agricultural chemical analysis of the soil[M]. Beijing: China Agricultural Science and Technology Press, 1999: 231-233.[20] Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.[21] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.[22] Luo Z, Wang X F, Zhu M, et al. Influences of mycorrhizal inoculation on maize straw degradation[J]. Journal of Soil and Water Conservation, 2012, 26(4): 267-270.[23] Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.[24] Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.[25] Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.[26] Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.[27] Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.[28] Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.[29] Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.[30] Yu M, Bi Y L, Zhang C Q. Lasting improvement effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on rhizosphere soil environment in mining subsidence[J]. 2013, 29(8): 242-248.[31] Anderson T H, Domsch K H. Application of eco-physiological quotients ( q CO2 and q D) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.[32] Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.[33] Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.[34] Cha T G, Zhang Z Q, Sun G, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7991-8000.[35] Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient rich patches in soil[J]. New Phytologist, 2000, 145: 575-584. 参考文献:[1] Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169. [2] 赵哈林, 刘任涛, 周瑞莲, 等. 沙漠化对科尔沁沙质草地大型土壤动物群落的影响及其成因分析[J]. 草业学报, 2013, 22(3): 70-77.[3] Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd Edition)[M]. Springer: Verlag Berlin Heidelberg, 2008.[4] 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望[J]. 草业学报, 2013, 22(5): 310-325.[5] 叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52.[6] Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.[7] Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.[8] Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.[9] Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50. [10] Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.[11] 彭思利, 申鸿, 张宇亭, 等. 不同丛枝菌根真菌侵染对土壤结构的影响[J]. 生态学报, 2012, 32(3): 863-870.[12] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000: 76-79.[13] 申艳, 杨慧玲, 何维明. 冬小麦生境中土壤养分对凋落物碳氮释放的影响[J]. 植物生态学报, 2010, 34(5): 498-504.[14] Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.[15] Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.[16] Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.[17] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 260-353.[18] 哈兹耶夫. 土壤酶活性[M]. 郑洪元, 周礼恺, 译. 北京: 科学出版社, 1980: 24-75.[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 231-233.[20] Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.[21] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.[22] 罗珍, 王晓峰, 朱敏, 等. 接种丛枝菌根真菌对玉米秸秆降解的影响[J]. 水土保持学报, 2012, 26(4): 267-270.[23] Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.[24] Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.[25] Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.[26] Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.[27] Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.[28] Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.[29] Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.[30] 于淼, 毕银丽, 张翠青. 菌根与根瘤菌联合应用对复垦矿区根际土壤环境的改良后效[J]. 农业工程学报, 2013, 29(8): 242-248.[31] Anderson T H, Domsch K H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.[32] Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.[33] Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.[34] 査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012, 32(24): 7991-8000.[35] Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil[J]. New Phytologist, 2000, 145: 575-584. |