草业学报 ›› 2014, Vol. 23 ›› Issue (5): 256-262.DOI: 10.11686/cyxb20140530
张振粉,南志标*
收稿日期:
2012-06-14
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
Email:zhibiao@lzu.edu.cn
作者简介:
张振粉(1984-),男,福建霞浦人,博士。E-mail:zhangzf_10@lzu.edu.cn
基金资助:
973项目课题(2014CB138704)和国家牧草产业技术体系(病虫害防控室主任、病害防控岗位科学家)资助
ZHANG Zhen-fen,NAN Zhi-biao
Received:
2012-06-14
Online:
2014-10-20
Published:
2014-10-20
摘要:
对来自甘肃省13个紫花苜蓿种植区的39份种子样品进行种带细菌分离,经表型特征和Biolog鉴定,将HTBRC1、HTBRC2、HTBRC3、HTBRC4、HTBRC5、HTBRC6、HTBRC7和HTBRC8初步鉴定为多粘类芽孢杆菌。通过菌种浸种发芽试验发现多粘类芽孢杆菌HTBRC1对紫花苜蓿具有促进生长的作用。试验探明了多粘类芽孢杆菌在甘肃省不同紫花苜蓿种植区所收获种子上的分布;发现分离于紫花苜蓿种子表皮及内部的多粘类芽孢杆菌具有较高耐盐性;为苜蓿生产提供了优质菌种资源及其理论基础。
中图分类号:
张振粉,南志标. 甘肃省紫花苜蓿种带促生多粘类芽孢杆菌的分离与鉴定[J]. 草业学报, 2014, 23(5): 256-262.
ZHANG Zhen-fen,NAN Zhi-biao. Isolation and identification of lucerne seed-borne growth promoting Paenibacillus polymyxa in Gansu Province, China[J]. Acta Prataculturae Sinica, 2014, 23(5): 256-262.
Reference:[1] Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collin) using a PCR probe test proposal for the creation of a new genus Paenibacillus[J]. Antonie Leeuwenhoek, 1993, 64: 253-260.[2] Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots[J]. FEMS Microbiology Ecology, 1997, 22: 325-334.[3] Timmusk S, Nicander B, Granhall U, et al. Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology and Biochemistry, 1999, 31: 1847-1852.[4] Holl F B, Chanway C P, Turkington R, et al. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa[J]. Soil Biology and Biochemistry, 1988, 20: 19-24.[5] Larsen J, Cornejo P, Barea J M. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus[J]. Soil Biology and Biochemistry, 2009, 41: 286-292.[6] Zhao L J, Yang X N, Li X Y, et al. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP 11[J]. Agricultural Sciences in China, 2011, 10: 728-736.[7] Lai K P, Chen S H, Hu M Y, et al. Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6[J]. Postharvest Biology and Technology, 2012, 69: 40-48.[8] O’Dowd H, Kim B, Margolis P, et al. Preparation of tetra Boc protected polymyxin B nonapeptide[J]. Tetrahedron Letters, 2007, 48: 2003-2005.[9] Kajimura Y, Kaneda M. Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT8: isolation, structure elucidation and biological ac-tivity[J]. Journal of Antibiotics, 1997, 50: 220-228.[10] Saravanakumar K, Sivanesan S, Samuel G, et al. Isolation and partial characteriza-tion of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry, 2005, 40: 3236-3243.[11] Piuri M, Sanchez Rivas C, Ruzal S M. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages[J]. Letters in Applied Microbiology, 1998, 27: 9-13.[12] Beck H C, Hansen A M, Lauritsen F R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa[J]. FEMS Microbiology Letters, 2003, 220: 67-73.[13] Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils[J]. Applied Soil Ecology, 2007, 36: 184-189.[14] Gu L K, Bai Z H, Jin B, et al. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater[J]. Journal of Environmental Sciences, 2010, 22: 1407-1412.[15] Ma G Z, Wang S F, Bao Z H, et al. Inhibitory effects and control efficacy of paenibacillus polymyxa strain L1-9 on alternaria solani of tomato[J]. China Vegetables, 2010, (12): 55-59.[16] Xu L, Wang W, Wei H G, et al. Effect of paenibacillus polymyxa HY96-2 on bacterial wilt of tomato[J]. Chinese Journal of Biological Control, 2006, 22(3): 216-220.[17] Cao M H. Preparation and Biological effects of a bio-organic fertilizer against tobacco black shank disease[D]. Nanjing: Nanjing Agricultural University, 2010.[18] Chen H Y, Lin J R, Liao F P, et al. Antibacterial activity and mechanism of paenibacillus polymyxa CP7 against peronophythora litchi[J]. Acta Horticulturae Sinica, 2010, 37(7): 1047-1056.[19] Chen X L, Wang G H, Jin J, et al. Biocontrol effect of Paenibacillus polymyxa BRF-1 and Bacillus subtilis BRF-2 on fusarium wilt disease of cucumber and tomato[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 446-450.[20] Tong Y H, Guo G P, Xu J Y, et al. Induced resistance to gray mould in tomato plant by antagonistic bacteria[J]. Chinese Journal of Biological Control, 2004, 20(3): 187-189.[21] Su Y M, Peng X W, Lu X, et al. Effect of paenibacillus polymyxa on nitrate content in Rape[J]. Chinese Agricultural Science Bulletin, 2011, 27(12): 144-148.[22] Yang S B, Liu X L. Research advances in Paenibacillus polymyxa and their bioactive substances[J]. Microbiology, 2008, 35(10): 1621-1625.[23] Guo Y X, Nan Z B, Wang C Z, et al. Progress in research on root invading fungi of Medicago sativa[J]. Acta Prataculturae Sinica, 2009, 18(5): 243-249.[24] Zhang Z F, Nan Z B. First report of Erwinia persicinus causing wilting of Medicago sativa sprouts in China[J]. Plant Disease, 2012, 96: 454.[25] Li C J, Nan Z B. Seed-borne fungi of lucerne and their pathogenicity to lucerne seed and seedling[J]. Acta Prataculturae Sinica, 2000, 9(1): 27-36.[26] Guo Y X, Nan Z B, Li C J, et al. Root-invading fungi of lucerne and winter wheat in the rotation system on the Loess Plateau[J]. Acta Ecologica Sinica, 2004, 24(3): 486-494.[27] Zhang Z F. 16S rDNA identification and diversity function of endophytic Bacillus subtilis from forage grasses[D]. Lanzhou: Gansu Agricultural University, 2010.[28] Nan Z B. Fungicide seed treatments of sainfoin control seed-borne and root-invading fungi[J]. New Zealand Journal of Agricultural Research, 1995, 38: 413-420.[29] Dong X Z, Cai M Y. Common bacterial identification system manual[M]. Beijing: Science Press, 2001.[30] Vos P D, Garrity G M, Jones D, et al. Bergey’s Manual of Systematic Bacteriology (Second Edition, Volume Three)[M]. New York: Springer Print, 2009.[31] Xie G L, Zhu G N, Ren X P. Diversity of pathogenic bacteria from rice seeds[J]. Acta Phytopathologica Sinica, 2002, 32(2): 114-121.[32] Kaneshiro W S, Burger M, Vine B G, et al. Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii[J]. Plant Disease (e-Xtra), 2008, 92: 1444-1450.[33] Khan Z, Kim S G, Jeon Y H, et al. A plant growth promoting rhizobacterium, Paenibacillus polymyxastrain GBR-1, suppresses root-knot nematode[J]. BioResource Technology, 2008, 99: 3016-3023. 参考文献:[1] Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collin) using a PCR probe test proposal for the creation of a new genus Paenibacillus[J]. Antonie Leeuwenhoek, 1993, 64: 253-260.[2] Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots[J]. FEMS Microbiology Ecology, 1997, 22: 325-334.[3] Timmusk S, Nicander B, Granhall U, et al. Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology and Biochemistry, 1999, 31: 1847-1852.[4] Holl F B, Chanway C P, Turkington R, et al. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa[J]. Soil Biology and Biochemistry, 1988, 20: 19-24.[5] Larsen J, Cornejo P, Barea J M. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus[J]. Soil Biology and Biochemistry, 2009, 41: 286-292.[6] Zhao L J, Yang X N, Li X Y, et al. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11[J]. Agricultural Sciences in China, 2011, 10: 728-736.[7] Lai K P, Chen S H, Hu M Y, et al. Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6[J]. Postharvest Biology and Technology, 2012, 69: 40-48.[8] O’Dowd H, Kim B, Margolis P, et al. Preparation of tetra-Boc-protected polymyxin B nonapeptide[J]. Tetrahedron Letters, 2007, 48: 2003-2005.[9] Kajimura Y, Kaneda M. Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological ac-tivity[J]. Journal of Antibiotics, 1997, 50: 220-228.[10] Saravanakumar K, Sivanesan S, Samuel G, et al. Isolation and partial characteriza-tion of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry, 2005, 40: 3236-3243.[11] Piuri M, Sanchez-Rivas C, Ruzal S M. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages[J]. Letters in Applied Microbiology, 1998, 27: 9-13.[12] Beck H C, Hansen A M, Lauritsen F R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa[J]. FEMS Microbiology Letters, 2003, 220: 67-73.[13] Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils[J]. Applied Soil Ecology, 2007, 36: 184-189.[14] Gu L K, Bai Z H, Jin B, et al. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater[J]. Journal of Environmental Sciences, 2010, 22: 1407-1412.[15] 马桂珍, 王淑芳, 暴增海, 等. 多粘类芽孢杆菌L1-9菌株对番茄早疫病的抑菌防病作用[J]. 中国蔬菜, 2010, (12): 55-59.[16] 徐玲, 王伟, 魏鸿刚, 等. 多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用[J]. 中国生物防治, 2006, 22(3): 216-220.[17] 曹明慧. 防治土传烟草黑胫病微生物有机肥的研制与生物效应研究[D]. 南京: 南京农业大学, 2010.[18] 陈海英, 林健荣, 廖富蘋, 等. 多粘类芽孢杆菌CP7对荔枝霜疫霉菌的抗菌活性及其作用机制[J]. 园艺学报, 2010, 37(7): 1047-1056.[19] 陈雪丽, 王光华, 金剑, 等. 多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果[J]. 中国生态农业学报, 2008, 16(2): 446-450.[20] 童蕴慧, 郭桂萍, 徐敬友, 等. 拮抗细菌对番茄植株抗灰霉病的诱导[J]. 中国生物防治, 2004, 20(3): 187-189.[21] 宿燕明, 彭霞薇, 吕欣, 等. 多粘类芽孢杆菌对油菜中硝酸盐含量的影响[J]. 中国农学通报, 2011, 27(12): 144-148.[22] 杨少波, 刘训理. 多粘类芽孢杆菌农用活性研究进展[J]. 微生物学通报, 2008, 35(10): 1621-1625.[23] 郭玉霞, 南志标, 王成章, 等. 苜蓿根部入侵真菌研究进展[J]. 草业学报, 2009, 18(5): 243-249.[24] Zhang Z F, Nan Z B. First report of Erwinia persicinus causing wilting of Medicago sativa sprouts in China[J]. Plant Disease, 2012, 96: 454.[25] 李春杰, 南志标. 苜蓿种带真菌及其致病性测定[J]. 草业学报, 2000, 9(1): 27-36.[26] 郭玉霞, 南志标, 李春杰, 等. 黄土高原苜蓿与小麦轮作系统根部入侵真菌研究[J]. 生态学报, 2004, 24(3): 486-494.[27] 张振粉. 牧草内生枯草芽孢杆菌的功能多样性及其16S rDNA鉴定[D]. 兰州: 甘肃农业大学, 2010.[28] Nan Z B. Fungicide seed treatments of sainfoin control seed-borne and root-invading fungi[J]. New Zealand Journal of Agricultural Research, 1995, 38: 413-420.[29] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.[30] Vos P D, Garrity G M, Jones D, et al. Bergey’s Manual of Systematic Bacteriology (Second Edition, Volume Three)[M]. New York: Springer Print, 2009.[31] 谢关林, 朱国念, 任小平. 浙江水稻稻种病原细菌多样性研究[J]. 植物病理学报, 2002, 32(2): 114-121.[32] Kaneshiro W S, Burger M, Vine B G, et al. Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii[J]. Plant Disease (e-Xtra), 2008, 92: 1444-1450.[33] Khan Z, Kim S G, Jeon Y H, et al. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode[J]. BioResource Technology, 2008, 99: 3016-3023. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[12] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[13] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[14] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[15] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||