草业学报 ›› 2014, Vol. 23 ›› Issue (6): 176-188.DOI: 10.11686/cyxb20140622
徐佩贤,费凌,陈旭兵,王兆龙*
收稿日期:
2013-12-02
出版日期:
2014-12-20
发布日期:
2014-12-20
通讯作者:
E-mail:turf@sjtu.edu.cn
作者简介:
徐佩贤(1984-),女,江苏徐州人,在读博士
基金资助:
XU Pei-xian,FEI Ling,CHEN Xu-bing,WANG Zhao-long
Received:
2013-12-02
Online:
2014-12-20
Published:
2014-12-20
摘要: 高羊茅、草地早熟禾、多年生黑麦草和匍匐剪股颖在镉(Cd)污染土壤上有很高的耐受力,但它们对Cd的耐受性和积累能力鲜有报道。4种冷季型草坪植物在不同Cd浓度(50, 100, 200, 400 mg Cd/kg)下处理60 d,本文对4种草坪植物在Cd胁迫下的生理响应及地上部和根系的Cd含量进行了研究。从Cd胁迫对草坪植物的草坪质量、相对生长速率、草坪密度、地上部和根系的生物量、叶片电导率、叶片相对含水量和叶片光化学效率的影响可以看出,高羊茅对Cd的耐受性最好,其次为多年生黑麦草,再次是草地早熟禾,匍匐剪股颖对Cd的耐受性最差。本研究还发现草坪植物在Cd胁迫下,叶片相对生长速率和根系生物量比其他的生理指标敏感。4种草坪植物地上部和根系的Cd浓度和积累量随着处理浓度的增加而增加。在相同Cd浓度处理下,草地早熟禾地上部Cd浓度最高,高羊茅和匍匐剪股颖次之,多年生黑麦草地上部的Cd浓度最低。4种草坪植物中根系Cd浓度最高的是多年生黑麦草。在50~400 mg Cd/kg处理下,草地早熟禾的转运系数和萃取率最大,多年生黑麦草的转运系数和萃取率最小。在相同Cd处理水平下,草地早熟禾地上部的Cd积累量比其他3种草坪植物高,匍匐翦股颖根系生物量低导致其根系的Cd积累量最低。本研究结果表明,4种草坪植物对Cd有较强的耐受性和积累能力,它们具有应用于Cd污染土壤上植物固定的潜力。
中图分类号:
徐佩贤,费凌,陈旭兵,王兆龙. 四种冷季型草坪植物对镉的耐受性与积累特性[J]. 草业学报, 2014, 23(6): 176-188.
XU Pei-xian,FEI Ling,CHEN Xu-bing,WANG Zhao-long. Cadmium tolerance and accumulation in four cool-season turfgrasses[J]. Acta Prataculturae Sinica, 2014, 23(6): 176-188.
Reference:[1]Dong W Q Y,Cui Y,Liu X.Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.[2]Komarnicki G J K.Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.[3]Arao T, Ishikawa S, Murakami M,et al.Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.[4]Buendía González L,Orozco Villafuerte J,Cruz Sosa F,et al.Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.[5]Jabeen R, Ahmad A, Iqbal M.Phytoremediation of heavy metals: Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.[6]Wei S H,Zhou Q X,Wang X,et al.A newly discovered Cd hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.[7]Sun Y B,Zhou Q X,Wang L,et al.Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.[8]Lie F H.Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J].Ecology and Environment Sciences, 2006, 15(2): 303-306.[9]Liu W,Shu W S,Lan C Y.Viola baoshanensis,a plant that hyperaccumulates cadmium[J].Chinese Science Bulletin, 2004, 49(1): 29-32.[10]Long X X,Wang Y H,Liu H Y.Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J].Journal of Plant Ecology, 2008, 32(1): 168-175.[11]Brown S L,Chaney R L,Angle J S,et al.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.[12]Sridhar B B M,Diehl S V, Han F X,et al.Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.[13]Singh O V,Labana S,Pandey G,et al. Phytoremediation: an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.[14]Dary M, Chamber Pérez M A,Palomares A J,et al.“In situ”phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.[15]Alvarenga P,Gon alves A P,Fernandes R M,et al.Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.[16]Zhang X F,Xia H P,Li Z A,et al.Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.[17]Chen Y,Shen Z,Li X.The use of vetiver grass (Vetiveria zizanioides)in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.[18]Xu P X,Wang Z L.Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.[19]Steinke K,Stier J C.Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.[20]DaCosta M,Wang Z L,Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.[21]Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.[22]Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.[23]Zhang S R,Chen M Y,Li T,et al.A newly found cadmium accumulator Malva sinensis Cavan[J].Journal of Hazardous Materials, 2010, 173(1-3): 705-709.[24]Zhuang P,Ye Z H,Lan C Y,et al.Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.[25]Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.[26]Pietrini F, Zacchini M, Iori V,et al.Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.[27]Liu S L,Shi X L,Pan Y Z,et al .Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus[J]. Acta Prataculturae Sinica, 2013, 22(3): 154-161.[28]Ding J J,Pan Y Z,Liu S L,et al.Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth[J]. Acta Prataculturae Sinica, 2013, 22(6): 77-85.[29]Krupa Z, Baszynski T.Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.[30]Zhang X A,Li M Y,Wang Z H,et al. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus[J]. Acta Prataculturae Sinica, 2013, 22(2): 187-194.[31]Ayeni O O, Ndakidemi P A, Snyman R G,et al.Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.[32]Breckle S W, Kahle H.Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.[33]Liu Y M,Wang K,Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.[34]Ci D W,Jiang D,Wollenweber B,et al.Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.[35]Shi G R, Cai Q S.Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.[36]Sun Y B,Zhou Q X,Diao C Y.Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.[37]Wang M J,Wang W X.Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.[38]Sun R L,Jin C X,Zhou Q X.Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.[39]Wei S H, Zhou Q X,Mathews S.A newly found cadmium accumulator Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.[40]Baker A J M,Brooks R R.Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.[41]Baker A J M,Reeves R D,Hajar A S M.Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.[42]Chaney R L, Malik M, Li Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology, 1997, 8(3): 279-284.[43]Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J].Nature, 2001, 409: 579.[44]Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.[45]Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.[46]Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.[47]Hernández-Allica J, Becerril J M, Garbisu C.Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.[48]Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103.参考文献:[1]Dong W Q Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.[2]Komarnicki G J K. Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.[3]Arao T, Ishikawa S, Murakami M,et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.[4]Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F,et al. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.[5]Jabeen R, Ahmad A, Iqbal M. Phytoremediation of heavy metals:Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.[6]Wei S H, Zhou Q X, Wang X,et al. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.[7]Sun Y B, Zhou Q X, Wang L,et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.[8]聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境, 2006, 15(2): 303-306.[9]Liu W, Shu W S, Lan C Y. Viola baoshanensis, a plant that hyperaccumulates cadmium[J]. Chinese Science Bulletin, 2004, 49(1): 29-32.[10]Long X X, Wang Y H, Liu H Y. Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J]. Journal of Plant Ecology, 2008, 32(1): 168-175.[11]Brown S L, Chaney R L, Angle J S,et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.[12]Sridhar B B M, Diehl S V, Han F X,et al. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.[13]Singh O V, Labana S, Pandey G,et al. Phytoremediation:an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.[14]Dary M, Chamber-Pérez M A, Palomares A J,et al. “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.[15]Alvarenga P, Gonalves A P, Fernandes R M,et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.[16]Zhang X F, Xia H P, Li Z A,et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.[17]Chen Y, Shen Z, Li X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.[18]Xu P X, Wang Z L. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.[19]Steinke K, Stier J C. Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.[20]DaCosta M, Wang Z L, Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.[21]Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.[22]Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.[23]Zhang S R, Chen M Y, Li T,et al. A newly found cadmium accumulator-Malva sinensis Cavan[J]. Journal of Hazardous Materials, 2010, 173(1-3): 705-709.[24]Zhuang P, Ye Z H, Lan C Y,et al. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.[25]Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.[26]Pietrini F, Zacchini M, Iori V,et al. Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.[27]刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响[J]. 草业学报, 2013, 22(3): 154-161.[28]丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6): 77-85.[29]Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.[30]张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响[J]. 草业学报, 2013, 22(2): 187-194.[31]Ayeni O O, Ndakidemi P A, Snyman R G,et al. Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.[32]Breckle S W, Kahle H. Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.[33]Liu Y M, Wang K, Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.[34]Ci D W, Jiang D, Wollenweber B,et al. Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.[35]Shi G R, Cai Q S. Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.[36]Sun Y B, Zhou Q X, Diao C Y. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.[37]Wang M J, Wang W X. Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.[38]Sun R L, Jin C X, Zhou Q X. Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.[39]Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulator-Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.[40]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.[41]Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.[42]Chaney R L, Malik M, Li Y M,et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284.[43]Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579.[44]Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.[45]Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.[46]Zhuang P, Yang Q W, Wang H B,et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.[47]Hernández-Allica J, Becerril J M, Garbisu C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.[48]Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103. |
[1] | 王竞红,多多. 多效唑对6种草坪草苗期抗旱性影响的研究[J]. 草业学报, 2014, 23(6): 253-258. |
[2] | 刘强,姚拓,马晖玲. 菌肥与柠檬酸互作对石灰性土壤生物学特性及草坪质量的影响[J]. 草业学报, 2014, 23(5): 223-230. |
[3] | 戴子云,高晨浩,宋峥,濮阳雪华,王昌俊,韩烈保. 北京鸿华高尔夫球场生态系统服务价值评价研究[J]. 草业学报, 2014, 23(3): 30-38. |
[4] | 陈伟,张苗苗,宋阳阳,陈建纲,张德罡. 重金属离子对2种草坪草荧光特性及根系形态的影响[J]. 草业学报, 2014, 23(3): 333-342. |
[5] | 罗耀,席嘉宾,谭筱弘,张巨明. 9种暖季型草坪草耐阴性综合评价及其指标的筛选[J]. 草业学报, 2013, 22(5): 239-247. |
[6] | 付玲,王彩云,尹少华. 蘑菇渣基质生产狗牙根无土草皮配方施肥优化研究[J]. 草业学报, 2013, 22(3): 241-. |
[7] | 谷佳林,边秀举,徐凯,张东雷,朱文,刘宝存,赵同科,方瑞元,曹兵,邹国元. 不同缓控释氮肥对高羊茅草坪生长及氮素挥发的影响[J]. 草业学报, 2013, 22(2): 235-242. |
[8] | 王丽华,李西,刘尉,干友民. 四种暖季型草坪草对SO2的抗性及净化能力的比较[J]. 草业学报, 2013, 22(1): 225-233. |
[9] | 刘金平,游明鸿. 丝茅草侵入量与高羊茅相对竞争力及对幼坪性状影响的分析[J]. 草业学报, 2012, 21(6): 315-320. |
[10] | 肖波,宋桂龙,许立新,韩烈保. 一种新的草坪草耐践踏试验方法的建立[J]. 草业学报, 2012, 21(5): 144-152. |
[11] | 时佩,黎瑞君,张巨明. 高尔夫球场草屑循环再利用研究[J]. 草业学报, 2012, 21(5): 153-159. |
[12] | 肖波,宋桂龙,韩烈保,包永霞,李飞飞,陈爱霞. 基于BP和RBF神经网络模型的草坪质量综合评价[J]. 草业学报, 2012, 21(4): 275-281. |
[13] | 樊瑞苹,周琴,周波,江海东 . 盐胁迫对高羊茅生长及抗氧化系统的影响[J]. 草业学报, 2012, 21(1): 112-117. |
[14] | 张旭,王佺珍,崔健,RAYMOND S A. 狗牙根草茎建植成坪质量的施肥和播种研究[J]. 草业学报, 2011, 20(5): 237-244. |
[15] | 邰建辉,王彦荣,李晓霞,魏学,陈谷. 不同覆盖物对无芒隐子草建植的影响[J]. 草业学报, 2011, 20(3): 287-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||