草业学报 ›› 2014, Vol. 23 ›› Issue (6): 189-197.DOI: 10.11686/cyxb20140623
刘会杰1,李胜1,*,马绍英1,张品南1,时振振1,杨晓明2
收稿日期:
2013-11-27
出版日期:
2014-12-20
发布日期:
2014-12-20
通讯作者:
E-mail:lish@gsau.edu.cn
作者简介:
刘会杰(1986-),女,河南开封人,在读硕士
基金资助:
LIU Hui-jie1,LI Sheng1,MA Shao-ying1,ZHANG Pin-nan1,SHI Zhen-zhen1,YANG Xiao-ming2
Received:
2013-11-27
Online:
2014-12-20
Published:
2014-12-20
摘要: 以豌豆品种“陇豌一号”为材料,通过对豌豆种子萌发初期初生根生理特性的研究,探索提高豌豆初生根外源H2O2胁迫条件下抗性能力的途径。运用生理生化方法,测定H2O2胁迫下豌豆初生根在外源Ca2+处理后的弯曲率和根系活力,并对豌豆初生根内的丙二醛(MDA)含量、相对膜透性、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性进行测定。结果显示,80 mmol/L的H2O2处理下的豌豆初生根正常生长受到显著抑制,但是经过Ca2+处理后,根系生长抑制作用得到缓解,根系活力得以恢复。外施10 mmol/L Ca2+初生根MDA值较CK1降低了37.32%,并显著地提高了POD,SOD,CAT和APX的活性,其值分别为51.946 U/(mg·min),865.174 U/g FW,1.9739 mmol/(L·g·min)和2.569 μmol/(L·g·min)。总之,外源施加Ca2+能够有效降低H2O2造成的氧化胁迫,缓解对初生根细胞膜的伤害,降低质膜透性,增强初生根系抗氧化酶活性,达到抵抗逆境胁迫的目的。
中图分类号:
刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197.
LIU Hui-jie,LI Sheng,MA Shao-ying,ZHANG Pin-nan,SHI Zhen-zhen,YANG Xiao-ming. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2 stress[J]. Acta Prataculturae Sinica, 2014, 23(6): 189-197.
Reference:[1]Zong X X,Rebecca F,Robert R,et al.Identification and analysis of genetic diversity structure within pisum genus based on microsatellite markers[J]. Scientia Agricultura Sinica, 2009, 42(1): 36-46.[2]Zong X X,Guan J P,Wang H F,et al.The world planting peas resource population structure and genetic diversity analysis[J]. Scientia Agricultura Sinica, 2010, 43(2): 240-251.[3]Lu Y M,Su C Q,Li H F.Effects of different salts stress on seed germination and seedling growth of Trifolium repens[J]. Acta Prataculturae Sinica, 2013, 22(4): 123-129.[4]Qu X X,Huang Z Y. The adaptive strategies of halophyte seed germination[J]. Acta Ecologica Sinica, 2005, 25(9): 2389-2398.[5]Shi K,Zhang F S,Liu X J,et al.Effect of different cultivation practices on Fe and Cd content in iron plaque outside rice root and Cd content in rice root[J]. Chinese Journal of Applied Ecology, 2003, 14(8): 1273-1277.[6]Sondès R,Abdelilah C,Ezzeddine E F.Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.)[J].Acta Physiologiae Plantarum, 2008, 30(4): 451-456.[7]Li P M,Sun Y F,Yang B X,et al.The Effect of low temperature stress on lipid peroxidation and activity of antioxidant enzymes of coptis chinensis Franch[J]. Chinese Agricultural Science Bulletin , 2011, 27(15): 117-120.[8]Wang F,Chang P P,Chen Y P,et al. Effect of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress[J]. Acta Prataculturae Sinica 2013, 22(2): 178-186.[9]Zhang S N,Gao P R,Xie Q E,et al. Cadmium induced accumulation of arabidopsis root tip hydrogen peroxide in plant growth inhibition[J]. Journal of China Agricultural Ecology, 2010, 18(1): 136-140.[10]Wang D M,Jia Y,Cui J Z.Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J].Chinese Agricultural Science Bulletin, 2009, 25(04): 124-128.[11]Zhang J L,Flowers T J,Wang S M.Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil,2010,326(1): 45-60.[12]Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research,2013, 115(1): 1-22.[13]Du X M,Yin W X,Zhao Y X,et al. The production and scavenging of reactive oxygen species in plants[J]. Chinese Journal of Biotechnology, 2001, 17(2): 121-125.[14]Demidchik V,Shabala S N,Davies J M. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels[J].The Plant Journal, 2007, 49(3): 377-386.[15]Zhang C P,He P,Yu Z L,et al.Effect of exogenous Ca2+ and NO donor SNP on seed germination and antioxidase activities of Perilla frutescens seedlings under NaCl stress[J]. China Journal of Chinese Materia Medica, 2010, 35(23): 3114-3119.[16]Shi H P,Wang Y L,Xeng B Q et al.Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress[J]. Chinese Journal of Biotechnology, 2012, 28(6): 747-762.[17]Clemensson Lindell A,Persson H.Fine root vitality in a norway spruce stand subjected to various nutrient supplies[J].Plant and Soil, 1995, 168-169: 167-172.[18]Zhou B,Wang J,Guo Z,et al. A simple colorimetric method for determination of hydrogen peroxide in plant tissues[J]. Plant Growth Regulation, 2006, 49: 113-118.[19]Velikova V,Yordanov I,Edreva A. Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines[J].Plant Science, 2000, 151(2):59-63.[20]Li H S. Plant physiology and biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press,2006.[21]Zhang Z L.Plant physiology experimental guidance[M]. Beijing: Higher Education Press,2010.[22]Jiang J L,Su M,Wang L Y,et al.Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination[J].Plant Physiology and Biochemistry, 2012, 53: 84-93.[23]Lu X M,Sun J,Guo S R,et al.Br to hypoxia stress and cell ultrastructure of cucumber seedling root antioxidant system[J]. Acta Horticulturae Sinica , 2012, 39(5): 888-896.[24]Mishra N R,Mishra R K,Singhal C S.Changes in the activities of anti oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J].Plant Physiology, 1993, 102: 903-910.[25]Li Y,Li J J,Wei X H.Responses of antioxidative capability in horsebean seedling to NO and H_2O_2 under Cd stress[J]. Acta Prataculturae Sinica, 2009, 18(6): 186-191.[26]Li J,Yan X F,Zu Y G.Korean pine seedling under low temperature stress of the generation of reactive oxygen species and protective enzyme changes[J]. Journal of Integrative Plant Biology, 2000, 42(2): 148-152.[27]Comas L,Eissenstat D, Lakso A.Assessing root death and root system dynamics in a study of grape canopy pruning[J]. New Phytologist, 2000, 147: 171-178.[28]Richter A,Frossard E, Brunner I.Polyphenols in the woody roots of norway spruce and european beech reduce TTC[J]. Tree Physiology, 2007, 27: 155-160.[29]Nanda A K,Andrio E,Marino D,et al.Reactive oxygen species during plant-microorganism early interactions[J].Journal of Integrative Plant Biology, 2010, 52(2): 195-204.[30]Baptista P,Martins A,Pais M S,et al.Involvement of reactive oxygen species during early stages of ecto-mycorrhiza establishment between Castanea sativa and Pisolithus tinctorius[J].Mycorrhiza, 2007, 17: 185-193.[31]Wahid A,Perveen M,Gelani S,et al.Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J].Journal of Plant Physiology, 2007, 164(3): 283-294.[32]Liu A R,Zhang Y B,Zhong Z H,et al.Effects of salt stress on the growth and osmotica accumulation of Coleus blumei[J]. Acta Prataculturae Sinica, 2013, 22(2): 211-218.[33]Wang H Z,Ma J,Li X Y,et al.Effects of Water Stress on Some Physiological Characteristics in Rice during Grain Filling Stage[J]. Acta Agronomica Sinica , 2006, 32(12): 1892-1897.[34]Yu H N,Liu P,Xu G D.Responses of growth and chlorophyll fluorescence characteristics of soybean to aluminum treatment[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(3): 257-265.[35]Liu B,Zhou W H,Shi S L,et al.Ameliorating effects of exogenous Ca2+ and salicylic acid on alfalfa seedlings under salt stress[J]. Chinese Journal of Grassland, 2011, 33(1): 42-47.[36]Xue Y F,Liu Z P.Effects of calcium ion on growth, physiological responses and photosynthetic ability in salt-stressed Jerusalem artichoke (Helianthus tuberosus L.) seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(9): 44-47.[37]Min H L,Cai H L,Xu Q S,et al.Effects of exogenous calcium on resistance of Hydrilla verticillata ( L.f.) Royle to cadmium stress[J]. Acta Ecologica Sinica , 2012, 32(1): 256-264.参考文献:[1]宗绪晓, Rebecca F,Robert R, 等. 豌豆属(Pisum)SSR标记遗传多样性结构鉴别与分析[J]. 中国农业科学, 2009, 42(1): 36-46.[2]宗绪晓, 关建平, 王海飞, 等. 世界栽培豌豆资源群体结构与遗传多样性分析[J]. 中国农业科学, 2010, 43(2): 240-251.[3]卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响[J]. 草业学报, 2013, 22(4): 123-129.[4]渠晓霞, 黄振英. 盐生植物种子萌发对环境的适应对策[J]. 生态学报, 2005, 25(9): 2389-2398.[5]史锟, 张福锁, 刘学军, 等. 不同栽培方式对籼、粳稻根表铁膜和根铁、镉含量的影响[J]. 应用生态学报, 2003, 14(8): 1273-1277.[6]Sondès R,Abdelilah C,Ezzeddine E F.Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.)[J].Acta Physiologiae Plantarum, 2008, 30(4): 451-456.[7]李品明, 孙玉芳, 杨丙贤, 等. 低温胁迫对黄连膜脂过氧化作用和抗氧化酶活性的影响[J]. 中国农学通报, 2011, 27(15): 117-120.[8]王芳, 常盼盼, 陈永平, 等. 外源NO对镉胁迫下玉米幼苗生长和生理特性的影响[J]. 草业学报, 2013, 22(2): 178-186.[9]张司南, 高培尧, 谢庆恩, 等. 镉诱导拟南芥根尖过氧化氢积累导致植物生长抑制[J]. 中国生态农业学报, 2010, 18(1): 136-140.[10]王东明, 贾媛, 崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展[J]. 中国农学通报, 2009, 25(04): 124-128.[11]Zhang J L,Flowers T J,Wang S M.Mechanisms of sodium uptake by roots of higher plant[J].Plant and Soil,2010,326(1): 45-60.[12]Zhang J L,Shi H Z.Physiological and molecular mechanisms of plant salt tolerance[J].Photosynthesis Research,2013, 115(1): 1-22.[13]杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001, 17(2): 121-125.[14]Demidchik V,Shabala S N,Davies J M.Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels[J].The Plant Journal, 2007, 49(3): 377-386.[15]张春平, 何平, 喻泽莉, 等. 外源Ca2+及NO供体硝普钠(SNP)对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J]. 中国中药杂志, 2010, 35(23): 3114-3119.[16]施和平, 王云灵, 曾宝强, 等. 外源钙对镉胁迫下南美蟛蜞菊毛状根生长、抗氧化酶活性和镉吸收的缓解效应[J]. 生物工程学报, 2012, 28(6): 747-762.[17]Clemensson-Lindell A,Persson H.Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies[J].Plant and Soil, 1995, 168-169: 167-172.[18]Zhou B,Wang J,Guo Z,et al.A simple colorimetric method for determination of hydrogen peroxide in plant tissues[J]. Plant Growth Regulation, 2006, 49: 113-118.[19]Velikova V,Yordanov I,Edreva A.Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines[J].Plant Science, 2000, 151(2):59-63.[20]李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社,2006.[21]张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社,2010.[22]Jiang J L,Su M,Wang L Y,et al.Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination[J].Plant Physiology and Biochemistry, 2012, 53: 84-93.[23]陆晓民, 孙锦, 郭世荣, 等. 油菜素内酯对低氧胁迫黄瓜幼苗根系抗氧化系统及其细胞超微结构的影响[J]. 园艺学报, 2012, 39(5): 888-896.[24]Mishra N R,Mishra R K,Singhal C S.Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J].Plant Physiology, 1993, 102: 903-910.[25]李源, 李金娟, 魏小红. 镉胁迫下蚕豆幼苗抗氧化能力对外源NO和H2O2的响应[J]. 草业学报, 2009, 18(6): 186-191.[26]李晶, 阎秀峰, 祖元刚. 低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J]. 植物学报, 2000, 42(2): 148-152.[27]Comas L,Eissenstat D,Lakso A.Assessing root death and root system dynamics in a study of grape canopy pruning[J]. New Phytologist, 2000, 147: 171-178.[28]Richter A,Frossard E,Brunner I.Polyphenols in the woody roots of Norway spruce and European beech reduce TTC[J]. Tree Physiology, 2007, 27: 155-160.[29]Nanda A K,Andrio E,Marino D,et al.Reactive oxygen species during plant-microorganism early interactions[J].Journal of Integrative Plant Biology, 2010, 52(2): 195-204.[30]Baptista P,Martins A,Pais M S,et al.Involvement of reactive oxygen species during early stages of ecto-mycorrhiza establishment between Castanea sativa and Pisolithus tinctorius[J].Mycorrhiza, 2007, 17: 185-193.[31]Wahid A,Perveen M,Gelani S,et al.Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J].Journal of Plant Physiology, 2007, 164(3): 283-294.[32]刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响[J]. 草业学报, 2013, 22(2): 211-218.[33]王贺正, 马均, 李旭毅, 等. 水分胁迫对水稻结实期一些生理性状的影响[J]. 作物学报, 2006, 32(12): 1892-1897.[34]俞慧娜, 刘鹏, 徐根娣. 大豆生长及叶绿素荧光特性对铝胁迫的反应[J]. 中国油料作物学报, 2007, 29(3): 257-265.[35]柳斌, 周万海, 师尚礼, 等. 外源Ca2+和水杨酸对苜蓿幼苗盐害的缓解效应[J]. 中国草地学报, 2011, 33(1): 42-47.[36]薛延丰, 刘兆普. 钙离子对盐胁迫下菊芋幼苗的生长、生理反应和光合能力的影响理论[J]. 农业工程学报, 2006, 22(9): 44-47.[37]闵海丽, 蔡三娟, 徐勤松, 等. 外源钙对黑藻抗镉胁迫能力的影响[J]. 生态学报, 2012, 32(1): 256-264. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[10] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[11] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[12] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[13] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[14] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
[15] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||