[1] Gao C T, Liu J H, Zhang Y Q, et al. physiological responses of oats seedling to short-term salt stress. Acta Agrestia Sinica, 2017, 25(2): 337-343. 高彩婷, 刘景辉, 张玉芹, 等. 短期盐胁迫下燕麦幼苗的生理响应. 草地学报, 2017, 25(2): 337-343. [2] Claudine C, Tom S, Susan R V, et al. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products. Food Chemistry, 2012, 134(3): 1592-1600. [3] Shewry P R, Piironen V, Lampi A M, et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 2008, 56(21): 9777-9784. [4] Guo H Y, Jia J Q, Lü J H, et al. Analyses of genetic diversities and evolutions of Avena L. germplasm resources by ISSR. Acta Agrestia Sinica, 2014, 22(2): 344-351. 郭红媛, 贾举庆, 吕晋慧, 等. 燕麦属种质资源遗传多样性及遗传演化关系ISSR分析. 草地学报, 2014, 22(2): 344-351. [5] Liu F Q, Liu J L, Zhu R F, et al. Physiological responses and tolerance of four oat varieties to salt stress. Acta Prataculturae Sinica, 2015, 24(1): 183-189. 刘凤歧, 刘杰淋, 朱瑞芬, 等. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价. 草业学报, 2015, 24(1): 183-189. [6] Dai W, Qiu G J, Shi Y G, et al. Effects of salt stress on growth and physiological characteristics of Ligustrum japohicum ‘Howardii’. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(3): 183-188. 戴文, 邱国金, 史云光, 等. 盐胁迫对金森女贞的生长与生理特性的影响. 山西农业大学(自然科学版), 2017, 37(3): 183-188. [7] Han L P, Ma F J, Liu J T, et al. Analysis of oat-straw salt ion accumulation and the potential for improving saline-alkali soils in coastal Hebei province. Chinese Journal of Eco-Agriculture, 2012, 20(12): 1706-1712. 韩立朴, 马凤娇, 刘金铜, 等. 远东近滨海地区燕麦秸秆盐分积累与改良盐碱地潜力分析. 中国生态农业学报, 2012, 20(12): 1706-1712. [8] Wu J Y, Liu J H, Zhai L J, et al. Salt tolerance of seed germination and seedling growth of different oat varieties. Chinese Journal of Ecology, 2009, 28(10): 1960-1965. 武俊英, 刘景辉, 翟利剑, 等. 不同品种燕麦种子萌发和幼苗生长的耐盐性. 生态学杂志, 2009, 28(10): 1960-1965. [9] Liu J X, Wang J C, Jia H Y.Different between physiological responses of Avena nuda seedling to salt and alkali stresses. Journal of Soil and Water Conservation, 2015, 29(5): 331-336. 刘建新, 王金成, 贾海燕. 燕麦幼苗对盐胁迫和碱胁迫的生理响应差异. 水土保持学报, 2015, 29(5): 331-336. [10] Xia F, Chen L, Yan H, et al. Antioxidant and ultrastructural responses to priming with PEG in aged, ultra-dry oat seed. Seed Science and Technology, 2016, 44(3): 1-13. [11] Bewley J D, Bradford K J, Hilhorst H W M, et al. Seeds: Physiology of development, germination and dormancy. 3rd. New York: Springer, 2013. [12] Yu L, Liu Y H, Yuan W C, et al. Recent advances in the study of accumulation of ascorbic acid and its molecular mechanism in plants. Chinese Bulletin of Botany, 2016, 51(3): 396-410. 俞乐, 刘拥海, 袁伟超, 等. 植物抗坏血酸积累及其分子机制的研究进展. 植物学报, 2016, 51(3): 396-410. [13] Lee Y P, Baek K H, Lee H S, et al. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. Journal of Experiment Botany, 2010, 61(9): 2499-2506. [14] Saeidi-Sar S, Abbaspour H, Afshari H, et al. Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologiae Plantarum, 2013, 35(3): 667-677. [15] Ejaz B, Sajid Z A, Aftab F.Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology, 2012, 36(6): 630-640. [16] Beltagi M S.Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. African Journal of Plant Science, 2008, 2(10): 118-123. [17] Chang Y X, Xu K D, Zhou L, et al. Ascorbic acid mitigating the inhibition of salt stress to wheat seedling growth. Journal of Triticeae Crops, 2013, 33(1): 151-155. 常云霞, 徐克东, 周琳, 等. 抗坏血酸对盐胁迫下小麦幼苗生长抑制的缓解效应. 麦类作物学报, 2013, 33(1): 151-155. [18] Khan A, Iqbal I, Shah A,et al. Alleviation of adverse effects of salt stress in brassica(Brassica campestris) by pre-sowing seed treatment with ascorbic acid. American-Eurasian Journal of Agricultural and Environmental Science, 2010, 7(5): 557-560. [19] ISTA. International rules for seed testing. Bassersdorf: Zurich, 2015. [20] Abdul-Baki A A, Anderson J D. Vigour determination in soybean seed multiple criteria. Crop Science, 1973, 13(6): 630-633. [21] Ellis R H, Roberts E H.The influence of genotype, temperature and moisture on seed longevity in chickpea, cowpea and soybean. Annals of Botany, 1982, 50(1): 69-82. [22] Lu P N, Liu J H, Li Q, et al. Comparison of quality and yield of different oat varieties in saline-alkali land. Journal of Triticeae Crops, 2016, 36(11): 1510-1516. 卢培娜, 刘景辉, 李倩, 等. 盐碱地不同燕麦品种的品质及产量比较. 麦类作物学报, 2016, 36(11): 1510-1516. [23] Gao Z W, Lin J X, Shao S, et al. Effect of complex salt-alkali stresses on seed germination of oat. Pratacultural Science, 2014, 31(3): 451-456. 高战武, 蔺吉祥, 邵帅, 等. 复合盐碱胁迫对燕麦种子发芽的影响. 草业科学, 2014, 31(3): 451-456. [24] Zhang Q L, Liu Q, Gao H, et al. Effect of endogenous ascorbic acid on seed germination and seedling growth of rice. Journal of Tropical and Subtropical Botany, 2016, 24(3): 273-279. 张启雷, 刘强, 高辉, 等. 内源抗坏血酸对水稻种子萌发及幼苗生长的影响. 热带亚热带植物学报, 2016, 24(3): 273-279. [25] Shin R, Schachtman D P.Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(23): 8827-8832. [26] Zhu Z J.Changes of activities of ascorbate-dependent H2O2-scavenging enzymes during imbibition and germination of oil rape seeds. Journal of Zhejiang Agricultural University, 1997, 23(5): 505-509. 朱祝军. 油菜种子发芽过程中依赖于抗坏血酸的H2O2清除酶活性的变化. 浙江农业大学学报, 1997, 23(5): 505-509. [27] Chang Y X, Xu K D, Liu B, et al. Alleviative effect of exogenous ascorbic acid on cadmium toxicity in wheat seedlings. Journal of Triticeae Crops, 2017, 37(2): 246-252. 常云霞, 徐克东, 刘彬, 等. 外源抗坏血酸对镉毒害小麦幼苗的缓解作用. 麦类作物学报, 2017, 37(2): 246-252. [28] Gallie D R.The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experiment Botany, 2013, 64(2): 433-443. [29] Liu Y J, Fan J, Han X K, et al. Effect of exogenous vitamins on seed germination and recovery of Medicago sativa L. under high NaCl stress. Chinese Agricultaural Science Bulletin, 2015, 31(26): 12-27. 刘艳军, 范晶, 韩学珅, 等. 外源维生素对高NaCl胁迫下紫花苜蓿种子萌发及恢复性的影响. 中国农学通报, 2015, 31(26): 12-27. [30] Jiang X W, Li H Q, Wang J H.Physiological response of Scutellaria baicalensis seed germination and seedling to exogenous ascorbic acid under salt stress. Plant Physiology Journal, 2015, 51(2): 166-170. 江绪文, 李贺勤, 王建华. 盐胁迫下黄芩种子萌发及幼苗对外源抗坏血酸的生理响应. 植物生理学报, 2015, 51(2): 166-170. [31] Fan M H, Zhang Y X, Shi Y, et al. Effects of exogenous ascorbic acid on seed germination and growth of Brassica napus under seawater stress. Chinese Journal of Oil Crop Science, 2009, 31(1): 34-38. 范美华, 张义鑫, 石戈, 等. 外源抗坏血酸对油菜种子在海水胁迫下萌发生长的影响. 中国油料作物学报, 2009, 31(1): 34-38. [32] Shi Y C, Yang Y Y, Xue R L, et al. Research advance of biological function of ascorbic acid in plants. Plant Physiology Journal, 2015, 51(1): 1-8. 石永春, 杨永银, 薛瑞丽, 等. 植物中抗坏血酸的生物学功能研究进展. 植物生理学报, 2015, 51(1): 1-8. [33] Wang C, Zhu Y L, Yang L F, et al. Effects of NaCl stress on ascorbate-glutathione cycle in vegetable soybean seeds. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1209-1216. 王聪, 朱月林, 杨立飞, 等. NaCl胁迫对菜用大豆种子抗坏血酸-谷胱甘肽循环的影响. 植物营养与肥料学报, 2010, 16(5): 1209-1216. [34] Liu Z P, Li B B, Xue H N, et al. Effect of NaCl stress on antioxidant system and ascorbate-glutathione cycle in barley seeds. Journal of Triticeae Crops, 2016, 36(6): 736-741. 刘志萍, 李琲琲, 薛海楠, 等. NaCl胁迫对大麦籽粒抗坏血酸-谷胱甘肽循环的影响. 麦类作物学报, 2016, 36(6): 736-741. |