[1] Roy S J, Negrão S, Tester M.Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26(4): 115-124. [2] Ha B K, Vuong T D, Velusamy V, et al. Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica, 2013, 193(1): 79-88. [3] Zhu J F, Cui Z R, Wu C H, et al. Research advances and prospect of saline and alkali land greening in China. World Forest Research, 2018, 31(4): 70-75. 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望. 世界林业研究, 2018, 31(4): 70-75. [4] Rozema J, Flowers T J.Crops for a salinized world. Science, 2008, 322: 1478-1480. [5] Barłóg P.The soil Na concentration as a background of fertilizer Na recommendation: A case of sugar beet. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2013, 63(3): 206-218. [6] Kronzucker H J, Coskun D, Schulze L M, et al. Sodium as nutrient and toxicant. Plant and Soil, 2013, 369(1/2): 1-23. [7] Assaha D V M, Ueda A, Saneoka H, et al. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology, 2017, 8: 509. [8] Wang X S, Ji X M, Liu L Y, et al. Effects of epibrassinolide on ion absorption and distribution in Medicago species under NaCl stress. Acta Prataculturae Sinica, 2018, 27(9): 110-119. 王小山, 季晓敏, 刘隆阳, 等. EBR对NaCl胁迫下苜蓿属植物离子吸收和分配的影响. 草业学报, 2018, 27(9): 110-119. [9] Yuan H J, Ma Q, Wu G Q, et al. ZxNHX controls Na+ and K+ homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Annals of Botany, 2015, 115(3): 495-507. [10] Wu G Q, Jiao Q, Shui Q Z.Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant Soil and Environment, 2015, 61(5): 220-226. [11] Radiĉ S, Štefaniĉ P P, Lepeduš H, et al. Salt tolerance of Centaurea ragusina L. is associated with efficient osmotic adjustment and increased antioxidative capacity. Environmental and Experimental Botany, 2013, 87: 39-48. [12] Gao Z Q, Dou W, Zhang R, et al. Evaluation of the productive performance and nutrition value of Onobrychis viciaefolia Scop. cv. Gansu in different utilization period in arctic alpine area. China Feed, 2011, 11: 32-33. 高占琪, 豆卫, 张榕, 等. 甘肃红豆草在高寒牧区的生产性能和营养价值评价. 中国饲料, 2011, 11: 32-33. [13] Liu X L, Li Y H.Research situation on tannins from sainfoin. Animal Husbandry and Feed Science, 2016, 37(12): 47-52. 刘秀丽, 李元恒. 红豆草单宁的研究概况. 畜牧与饲料科学, 2016, 37(12): 47-52. [14] Wu G Q, Liu H L, Feng R J, et al. Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlings. Plant Soil and Environment, 2017, 63(12): 545-551. [15] Wu G Q, Jia S, Liu H L, et al. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings. Pratacultural Science, 2017, 34(8): 1661-1668. 伍国强, 贾姝, 刘海龙, 等. 盐胁迫对红豆草幼苗生长和离子积累及分配的影响. 草业科学, 2017, 34(8): 1661-1668. [16] Rodrigues C R F, Silva E N, Ferreira-Silva S L, et al. High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. Journal of Plant Nutrition and Soil Science, 2013, 176(2): 157-164. [17] Wang S M, Zhang J L, Flowers T J.Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiology, 2007, 145(2): 559-571. [18] Yue L J, Li S X, Ma Q, et al. NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments, 2012, 87: 153-160. [19] Witham F H, Blaydes, D F, Devlin R M Experiments in plant physiology. International Journal of Plant Sciences, 1971, 5: 1619-1624. [20] Bates L S, Waldren R P, Teare I D.Rapid determination of free proline for water stress studies. Plant and Soil, 1973, 39(1): 205-207. [21] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254. [22] Zhang Z J, Li H Z, Zhou W J, et al. Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regulation, 2006, 49(1): 27-34. [23] Peever T L, Higgins V J.Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiology, 1989, 90(3): 867-875. [24] Liu H L, Wang Q Q, Yu M M, et al. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell and Environment, 2008, 31(9): 1325-1334. [25] Leskow C C, Kamenetzky L, Dominguez P G, et al. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. Journal of Experimental Botany, 2016, 67(14): 4091-4103. [26] Liu F, Chen Y W, Li D D, et al. Changes in carbohydrate status and related enzymes of Lilium pumilum bulds during breaking dormancy under refrigerated conditions. Acta Prataculturae Sinica, 2016, 25(5): 60-68. 刘芳, 陈业雯, 李丹丹, 等. 细叶百合低温解除休眠过程中鳞茎内糖分及相关酶的研究. 草业学报, 2016, 25(5): 60-68. [27] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A.Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32(1): 93-101. [28] Liu J Y, Cheng Y J, Zhu X W, et al. Studies on SOD, POD and CAT activities of flower buds in cytoplasmic male sterile tobacco. Acta Tabacaria Sinica, 2011, 17(5): 34-39. 刘齐元, 程元强, 朱肖文, 等. 雄性不育烟草花蕾中SOD、POD和CAT活性研究. 中国烟草学报, 2011, 17(5): 34-39. [29] Aebi H.Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. [30] Nakano Y, Asada Y.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. [31] Farooq M, Hussain M, Wakeel A, et al. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 2015, 35(2): 461-481. [32] Abbasi G H, Akhtar J, Ahmad R, et al. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regulation, 2015, 76(1): 111-125. [33] Yang H W, Liu W Y, Shen B Y, et al. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Prataculturae Sinica, 2017, 26(8): 146-153. 杨宏伟, 刘文瑜, 沈宝云, 等. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响, 草业学报, 2017, 26(8): 146-153. [34] Zheng Y H, Ning T Y, Jia A J, et al. Amortizing functions of potassium nutrition on different genotypes wheat seedling under NaCl stress. Plant Nutrition & Fertilizer Science, 2007, 13(3): 381-386. 郑延海, 宁堂原, 贾爱君, 等. 钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用. 植物营养与肥料学报, 2007, 13(3): 381-386. [35] Zhao Y W, Li Q Y, Lu B, et al. Physiological characteristics and comprehensive evaluation of Pyrus calleryana Decne. under NaCl stress. Plant Physiology Journal, 2019, 55(1): 23-31. 赵佳伟, 李清亚, 路斌, 等. 不同品种北美豆梨对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报, 2019, 55(1): 23-31. [36] Wu G Q, Feng R J, Li S J, et al. Effects of salt treatment on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris). Acta Prataculturae Sinica, 2017, 26(4): 169-177. 伍国强, 冯瑞军, 李善家, 等. 盐处理对甜菜生长和渗透调节物质积累的影响. 草业学报, 2017, 26(4): 169-177. [37] Elsa D, Valentina B, Michel G, et al. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development. Journal of Experimental Botany, 2016, 67(11): 3419-3431. [38] Winter H, Huber S C.Biomethanation from enzymatically hydrolyzed brewer’s spent grain: Impact of rapid increase in loadings. Bioresource Technology, 2015, 190(1): 167-174. [39] Kaur S, Gupta A K, Kaur N.Indole acetic acid mimics the effect of salt stress in relation to enzymes of carbohydrate metabolism in chickpea seedlings. Plant Growth Regulation, 2003, 39(1): 91-98. |