欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2019, Vol. 28 ›› Issue (7): 123-131.DOI: 10.11686/cyxb2018813

• 研究论文 • 上一篇    下一篇

玉米‖花生茬口对冬小麦旗叶光化学活性的影响

王飞, 尹飞, 龙浩强, 李雪, 武岩岩, 焦念元*, 马超, 付国占   

  1. 河南科技大学农学院,河南省旱地农业工程技术研究中心,河南 洛阳 471000
  • 收稿日期:2018-12-14 修回日期:2019-04-22 出版日期:2019-07-20 发布日期:2019-07-20
  • 通讯作者: jiaony1@163.com
  • 作者简介:王飞(1993-),男,山东济南人,在读硕士。E-mail: 1216677627@qq.com
  • 基金资助:
    国家自然基金(U1404315)和河南省自然科学基金(182300410014)资助。

Photochemical activity in flag leaves of winter wheat when following maize, peanut, or a maize-peanut intercrop in a crop rotation

WANG Fei, YIN Fei, LONG Hao-qiang, LI Xue, WU Yan-yan, JIAO Nian-yuan*, MA Chao, FU Guo-zhan   

  1. College of Agriculture, Henan University of Science and Technology, Dryland Agricultural Engineering Technology Research Center of Henan, Luoyang 471000, China
  • Received:2018-12-14 Revised:2019-04-22 Online:2019-07-20 Published:2019-07-20

摘要: 为探明玉米‖花生茬口显著提高冬小麦旗叶的光合速率和产量的光反应机理,研究了玉米‖花生茬口(间作茬口, ICR)、玉米茬口(MCR)和花生茬口(PCR)及不同施磷水平对冬小麦播前土壤含水量、冬小麦花后旗叶的气体交换参数、光系统Ⅱ (PSⅡ)、光系统I (PSⅠ)及二者间的性能协调性的影响。结果表明,间作茬口较玉米茬口显著提高了冬小麦播前土壤含水量及旗叶的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和PSⅡ反应中心供(Wk)/受体侧(Vj)的活性,增强了单位面积吸收的光能(ABS/CSo)、捕获的能量(TRo/CSo)和进入电子传递的光能(ETo/CSo)。间作茬口较玉米茬口显著提高了冬小麦扬花期旗叶PSⅡ初级光化学最大量子产额(φpo)、转化效率(Ψo)、电子传递效率(δRo)及乳熟期的PSⅠ的性能(ΔI/Io)、PSⅡ与PSⅠ协调性(ΦPSⅠ/PSⅡ)和籽粒产量,较花生茬口显著提高了乳熟期的φpoδRo值。施磷提高了PnABS/CSoTRo/CSoETo/CSoφpoΨoδRoΔI/IoΦPSⅠ/PSⅡ值。这说明间作茬口较玉米茬口提高了冬小麦旗叶光反应中心活性,从而提高净光合速率,重要原因可能是间作茬口能保持耕层较高的土壤含水量。

关键词: 玉米‖, 花生茬口, 土壤含水量, 冬小麦, 光化学特性, 光系统

Abstract: The aim of this research was to verify that photosynthetic activity of flag leaves and yield, in winter wheat, is enhanced when following a maize-peanut intercrop in a crop rotation. Winter wheat was sown into plots in a field experiment which had previously grown a maize-peanut intercrop (ICR), maize (MCR) or peanut (PCR), either without, or with phosphate fertilizer at 180 kg P2O5·ha-1 (P0 or P1, respectively). Data gathered included: soil moisture content before wheat sowing, wheat flag leaf gas exchange parameters, and characteristics of photosystem Ⅱ (PSⅡ), photosystem Ⅰ (PSⅠ) and their interrelationships. Compared with MCR, ICR significantly (P<0.05) increased soil moisture content at wheat sowing, the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the performances of electron donor (Wk) and acceptor (Vj) sites of the electron transport chain in the PSⅡ reaction center in flag leaves of winter wheat; and enhanced the absorbed energy flux (ABS/CSo), trapped energy flux (TRo/CSo), electron transport flux (ETo/CSo) per cross section (CS) in flag leaves of winter wheat. Compared to MCR, ICR significantly improved the maximum quantum yield of primary photochemistry (φpo), energy conversion efficiency (Ψo), electron transfer efficiency (δRo), PSⅠ performance (ΔI/Io), coordination between PSⅡ and PSⅠ (ΦPSⅠ/PSⅡ) in flag leaves, and the yield of winter wheat; and increased the φpo and δRo at the milk-stage of grain development, as compared to PCR. Supplying phosphate fertilizer increased the Pn, ABS/CSo, TRo/CSo, ETo/CSo, φpo, Ψo, δRo, ΔI/Io and ΦPSⅠ/PSⅡ in flag leaves of winter wheat. The data indicate that intercropping peanut with maize in a crop rotation benefited the following crop in the rotation. In this experiment, following a maize-peanut intercrop, the activity of light reaction centers in flag leaves of winter wheat were enhanced, so the net photosynthetic rate was increased. Conservation of soil moisture during the maize-peanut intercrop phase of the rotation appears to be an important contributing factor in these results.

Key words: maize intercropping peanut crops for rotation, soil moisture content, winter wheat, photochemical activity, photosystem