[1] Su Y, Jiao J Y, Wang Q L, et al. Seedling banks and their relationship with the standing vegetation under different erosion environment in the hill-gully Loess Plateau Region. Acta Prataculturae Sinica, 2013, 22(5): 154-164. 苏嫄, 焦菊英, 王巧利, 等. 黄土丘陵沟壑区不同侵蚀环境下幼苗库及其与地上植被的关系. 草业学报, 2013, 22(5): 154-164. [2] Yang Y D, Zhang J S, Cai G J, et al. Soil water dynamics of different vegetation in gully and hilly regions of the Loess Plateau. Research of Soil and Water Conservation, 2008, 15(4): 149-151. 杨永东, 张建生, 蔡国军, 等. 黄土高原丘陵沟壑区不同植被类型土壤水分动态变化. 水土保持研究, 2008, 15(4): 149-151. [3] Zhang X Y, Du F, Pan T H, et al. Effects of soil moisture variation on competition among co-existing species in old-field communities of the Loess Hilly Region. Acta Ecologica Sinica, 2019, 39(3): 957-968. 张馨月, 杜峰, 潘天辉, 等. 土壤水分变化对黄土丘陵区撂荒群落共存种竞争的影响. 生态学报, 2019, 39(3): 957-968. [4] Bazzaz F A.The physiological ecology of plant succession. Annual Review of Ecology & Systematics, 1979, 10(1): 351-371. [5] Li W W.Comparison of water use characteristics among co-existing species of old-field communities in Loess Plateau. Yangling: Northwest A&F University, 2017. 李伟伟. 黄土丘陵区撂荒群落共存种水分利用特性比较研究. 杨凌: 西北农林科技大学, 2017. [6] Li Q K, Ma K P.Advances in plant succession ecophysiology. Acta Phytoecologica Sinica, 2002, 26(S1): 9-19. 李庆康, 马克平. 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化. 植物生态学报, 2002, 26(S1): 9-19. [7] Wang T, Ma L, Ma Y J.Effects of jujube-cotton agroforestry systems on plants growth and photosynthetic characteristics in arid area. Southwest China Journal of Agricultural Sciences, 2016, 29(11): 2588-2593. 王婷, 马亮, 马英杰. 干旱区枣棉复合系统对植物生长及光合特性的影响. 西南农业学报, 2016, 29(11): 2588-2593. [8] Li X L.Studies on the photosynthetic characteristics, dynamic growth and competition between Microcystis aeruginosa and Chloromonas rosae. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2006. 李小龙. 铜绿微囊藻(Microcystis aeruginosa)和玫瑰拟衣藻(Chloromonas rosae)光合作用特性、营养生长动力学及相互竞争研究. 武汉: 中国科学院研究生院(武汉植物园), 2006. [9] Fan H F, Ding L, Xu Y L, et al. Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves. Russian Journal of Plant Physiology, 2017, 64(2): 162-173. [10] Ma Y X, Li G T, Zhang H W, et al. Photosynthetic characteristics and physiological and biochemical indexes in response to drought stress in Zizyphus jujuba seedlings. Journal of Arid Land Resources and Environment, 2018, 32(12): 164-169. 麻云霞, 李钢铁, 张宏武, 等. 酸枣幼苗光合特征和生理生化指标对不同强度干旱胁迫的响应. 干旱区资源与环境, 2018, 32(12): 164-169. [11] Wu J H, Xu J J, Zhang J, et al. Photosynthetic physiology responses of two Potentilla species under drought stress. Pratacultural Science, 2014, 31(7): 1330-1335. 吴建慧, 许建军, 张静, 等. 两种委陵菜对干旱胁迫的光合生理响应. 草业科学, 2014, 31(7): 1330-1335. [12] Du F, Xu X X, Zhang X C, et al. The ordination of abandoned old-field communities and secondary succession rate, successional divergence or convergence in the Loess Hilly Region of northern Shaanxi Province. Acta Ecologica Sinica, 2008, 28(11): 5418-5427. 杜峰, 徐学选, 张兴昌, 等. 陕北黄土丘陵区撂荒群落排序及演替. 生态学报, 2008, 28(11): 5418-5427. [13] Guan X Y.The study of fast measuring methods for urban soil physicochemistry properties. Changchun: Northeast Normal University, 2006. 官香元. 城市土壤理化性质快速检测方法研究. 长春: 东北师范大学, 2006. [14] Jin Z X, Ke S S.The diurnal variation of photosynthesis in leaves of Rhododendron fortunei. Bulletin of Botanical Research. 2004, 24(4): 447-452. 金则新, 柯世省. 云锦杜鹃叶片光合作用日变化特征. 植物研究, 2004, 24(4): 447-452. [15] Xu D Q.Photosynthesis efficiency. Shanghai: Shanghai Science and Technology Press, 2002. 许大全. 光合作用效率. 上海: 上海科学技术出版社, 2002. [16] Wen S Z, Wei S X, He G X, et al. Photosynthesis characteristics of Alnus cremastogyne of two stand age. Journal of Central South University of Forestry & Technology, 2011, 31(5): 52-56. 文仕知, 韦铄星, 何功秀, 等. 两种林龄四川桤木的光合特性研究. 中南林业科技大学学报, 2011, 31(5): 52-56. [17] Sonobe K, Hattori T, An P, et al. Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without Silicon under water stress. Journal of Plant Nutrition, 2009, 32(3): 433-442. [18] Zhang X Y.The comparison of relative competitive ability and its drought resistance characteristics among co-existing species in old-field communities of Loess Hilly Region. Yangling: Northwest A&F University, 2018. 张馨月. 黄土丘陵区撂荒群落共存种的相对竞争能力与其耐旱特性比较研究. 杨凌: 西北农林科技大学, 2018. [19] Hirasawa T, Hsiao T C.Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Research, 1999, 62(1): 53-62. [20] Liu S.The study of photosynthetic characteristics of shine muscat. Nanjing: Nanjing Agricultural University, 2015. 刘帅. ‘阳光玫瑰’葡萄光合特性研究. 南京: 南京农业大学, 2015. [21] Chen J P.Effect of MnSO4 on photosynthetic characteristics and mineral nutrition in ‘Shi-men-zao-shuo’ chestnut tree. Tai’an: Shandong Agricultural University, 2013. 陈锦璞. 锰对‘石门早硕’板栗光合特性及矿质营养的影响. 泰安: 山东农业大学, 2013. [22] Zhang Y J, Xie Z K, Wang Y J, et al. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russian Journal of Plant Physiology, 2011, 58(5): 844-850. [23] Zhou L N, Qu D, Shao L L, et al. Effects of sulfur fertilization on the contents of photosynthetic pigments and MDA under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1579-1583. 周莉娜, 曲东, 邵丽丽, 等. 干旱胁迫下硫营养对小麦光合色素及MDA含量的影响. 西北植物学报, 2005, 25(8): 1579-1583. [24] Wünsche J N, Palmer J W, Greer D H.Effects of crop load on fruiting and gas-exchange characteristics of ‘Braeburn’/M.26 apple trees at full canopy. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 2000, 125(1): 93-99. [25] Wang H X, Zhang Z H, Xuan L C.Advances in research of photosynthesis in fruit trees. Journal of Agricultural University of Hebei, 2003, 26(Z1): 49-52. 王红霞, 张志华, 玄立春. 果树光合作用研究进展. 河北农业大学学报, 2003, 26(Z1): 49-52. [26] Li J, Liu J M, Wen A H, et al. Simulated photosynthetic response of Cinnamomum migao during drought stress evaluated using light-responds models. Acta Ecologica Sinica, 2019, 39(3): 913-922. 李佳, 刘济明, 文爱华, 等. 米槁幼苗光合作用及光响应曲线模拟对干旱胁迫的响应. 生态学报, 2019, 39(3): 913-922. [27] Liu M X.Physiological responses of drought stress and post-drought re-water in two interspecific kinds of turfgrasses. Nanjing: Nanjing Agricultural University, 2015. 刘梦娴. 干旱复水前后两种不同类型草坪草的生理响应. 南京: 南京农业大学, 2015. [28] Liu G, Zhang G C, Liu X.Responses of Cotinus coggygra var. cinerea photosynthesis to soil drought stress. Chinese Journal of Applied Ecology, 2010, 21(7): 1697-1701. 刘刚, 张光灿, 刘霞. 土壤干旱胁迫对黄栌叶片光合作用的影响. 应用生态学报, 2010, 21(7): 1697-1701. [29] Liu X J, Liu P Y, Zhang Q, et al. Effects of soil drought stress on photosynthetic characteristics of Ginkgo biloba seedlings. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(3): 467-472. 刘晓静, 刘佩迎, 张谦, 等. 土壤干旱胁迫对银杏幼苗光合特性的影响. 山东农业大学学报(自然科学版), 2018, 49(3): 467-472. [30] Cornic G.Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science, 2000, 5(5): 187-188. [31] Massonnet C, Costes E, Rambal S, et al. Stomatal regulation of photosynthesis in apple leaves: Evidence for different water-use strategies between two cultivars. Annals of Botany, 2007, 100(6): 1347-1356. [32] Akhter J, Mahmood K, Tasneem M A, et al. Water-use efficiency and carbon isotope discrimination of Acacia amplicons and Eucalyptus camaldulensis at different soil moisture regimes under semi-arid conditions. Biologia Plantarum, 2005, 49(2): 269-272. [33] Li F L, Bao W K, Wu N.Morphological and physiological responses of current Sophora davidii seedlings to drought stress. Acta Ecologica Sinica, 2009, 29(10): 5406-5416. 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应. 生态学报, 2009, 29(10): 5406-5416. [34] Du F, Shan L, Liang Z S, et al. Studies on the succession niche of abandoned arable land in a hilly Loess region of northern Shaanxi Province. Acta Prataculturae Sinica, 2006, 15(3): 27-35. 杜峰, 山仑, 梁宗锁, 等. 陕北黄土丘陵区撂荒演替生态位研究. 草业学报, 2006, 15(3): 27-35. [35] Wang Y N, Du F, Sui Y Y, et al. Morphological responses of six successional plant species in old-fields of the Loess Plateau to the pattern and level of nitrogen application in a pot experiment. Acta Ecologica Sinica, 2017, 37(9): 2913-2925. 王雁南, 杜峰, 隋媛媛, 等. 黄土丘陵区撂荒群落演替序列种根系对氮素施肥方式和水平的形态响应. 生态学报, 2017, 37(9): 2913-2925. [36] Zhang J, Zuo X A, Lü P, et al. Functional traits and interrelations of dominant plant species on typical grassland in the Horqin Sandy Land, China. Arid Zone Research, 2018, 35(1): 137-143. 张晶, 左小安, 吕朋, 等. 科尔沁沙地典型草地植物功能性状及其相互关系. 干旱区研究, 2018, 35(1): 137-143. [37] Zhang Z N, Wu G L, Wang D, et al. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(6): 313-319. 张志南, 武高林, 王冬, 等. 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 2014, 23(6): 313-319. [38] Li W W, Du F, Zhang X Y, et al. Response of reactive oxygen scavenging enzymes among nine co-existing species in Loess Plateau to water deficit. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1145-1154. 李伟伟, 杜峰, 张馨月, 等. 黄土丘陵区9种群落共存种干旱胁迫下抗氧化酶的响应. 西北植物学报, 2017, 37(6): 1145-1154. [39] Macarthur R H, Wilson E O.The theory of island biogeography. Princeton: Princeton University Press, 2001. [40] Yang Y F, Zhu T C.Plant ecology. Beijing: Higher education press, 2011. 杨允菲, 祝廷成. 植物生态学. 北京: 高等教育出版社出版, 2011. [41] Arntz M A, Delph L F.Pattern and process: Evidence for the evolution of photosynthetic traits in natural populations. Oecologia, 2001, 127(4): 455-467. [42] Sun Q.Influences of soil environmental factors in abandoned lands to vegetation restoration in hilly and gully regions on the Loess Plateau. Yangling: Northwest A&F University, 2006. 孙强. 黄土丘陵区植物群落演替对土壤主要性状的影响. 杨凌: 西北农林科技大学, 2006. [43] Zhang M, Liu F D, An S Q, et al. Photosynthetic capacity and water use efficiency of different ecological species groups in tropical montane rain forest, Hainan Island. Ecology and Environmental Sciences, 2017, 26(4): 576-581. 张明, 刘福德, 安树青, 等. 海南热带山地雨林不同生态种组光合能力与水分利用效率. 生态环境学报, 2017, 26(4): 576-581. [44] Miguel M F, Lortie C J, Callaway R M, et al. Competition does not come at the expense of colonization in seed morphs with increased size and dispersal. American Journal of Botany, 2017, 104(9): 1323. |